首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Nonlinear optical properties of Fe2O3 nanoparticles were investigated by the signal-beam Z-scan technique with Ar+ and Ne–He lasers. The largest reported effective nonlinear coefficient, n2=−8.07×10−7 cm2/W, was obtained. It is demonstrated that the nonlinear optical response originals from quantum confinement effect.  相似文献   

2.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

3.
A pyrochlore-related Ce2Zr2O8−x phase has been prepared in a reduction reoxidation process from Ce0.5Zr0.5O2 powders. Ce2Zr2O8−x, based on a cubic symmetry with a=1.053 nm, decomposes in nitrogen at 800 °C, but remains stable up to 900 °C in air. It shows mixed oxygen ionic and electronic conductivity. The bulk conductivity at 700 °C is 4×10−4 S cm−1 in air and 1×10−2 S cm−1 in nitrogen, and the activation energy is 1.27 eV in air. In nitrogen, the Arrhenius law is not obeyed, and a curved plot was obtained from 400 to 700 °C; then, the conductivity decreased rapidly due to the thermal decomposition of Ce2Zr2O8−x.  相似文献   

4.
The third-order optical nonlinearities of an organo-metallic compound, [(CH3)4N]2[Cu(dmit)2] (dmit2−=4,5-dithiolate-1,3-dithiole-2-thione), abbreviated as MeCu, dissolved in acetone are characterized by Z-scan technique with picosecond and nanosecond laser pulses in the near-infrared region. Two-photon absorption has been found when the sample solution is irradiated by 40 ps pulse width at 1064 nm and the two-photon absorption (TPA) coefficient βTPA is 4×10−13 m/W. While excited by 15 ns laser pulses at 1053 nm, the Z-scan spectra reveal strong reverse saturable absorption (RSA) and the nonlinear absorption coefficient βRSA is estimated to be as high as 7.07×10−11 m/W which is much larger than βTPA. An explanation for this enhancement is given. All the results suggest that MeCu may be a promising candidate for the application to optical limiting in the near-infrared region.  相似文献   

5.
A tunable electrooptically Q-switched RF excited waveguide CO2 laser with two channels is presented. Q-switched pulses have been obtained from one of the channels. The peak power is 300 W and the pulse width is 140 ns. CW laser output has been obtained from the other channel, which can been tuned by a PZT. The short-term heterodyne stability can be up to 10−9.  相似文献   

6.
In this paper we present a new discharge technique to excite slab CO2 lasers. A uniform stable glow discharge has been obtained in a volume of 3 × 30 × 446 mm3. Output power is 10 W, and a gain of 0.26% cm−1 has been obtained.  相似文献   

7.
Macroscopic magnetic field inhomogeneities might lead to image distortions, while microscopic field inhomogeneities, due to susceptibility changes in tissues, cause spin dephasing and decreasing T2 relaxation time. The latter effects are especially observed in the trabecular bone and in regions adjacent to air-containing cavities when gradient-echo sequences are applied. In conventional MRI, these susceptibility-related signal voids can be avoided by applying spin-echo (SE) techniques. In this study, an alternative method for the examination and control of susceptibility-related effects by spin-lock (SL) radiofrequency pulses is presented: SL pulses were applied in two different susceptibility-sensitive sequence types: (a) between the jump and return 90° pulses in a 90°xτ−90°x magnetization-prepared Fast Low Angle Shot (FLASH) sequence and (b) between the 90° pulse and the 180° pulse in an asymmetric SE sequence. The range of Larmor frequencies used for spin locking can be determined for different B1 amplitudes of the SL pulses, allowing control of image contrast by the amplitude of the SL pulses.  相似文献   

8.
The absorption spectrum of carbon dioxide in natural isotopic abundance has been investigated by CW-cavity ring down spectroscopy with a new setup based on fibred distributed feedback (DFB) laser diodes. By using a series of 25 DFB lasers, the CO2 spectrum was recorded in the 7123–7793 cm−1 region with a typical sensitivity of 3×10−10 cm−1. A 2125 transitions with intensities as low as 1×10−29 cm/molecule were detected and assigned to the 12C16O2, 16O12C17O and 16O12C18O isotopologues. For comparison, only 357 of them were previously reported from Venus spectra and 344 transitions were included in the 2004 version of the HITRAN database. The band by band analysis has led to the determination of the rovibrational parameters of 28, 2 and 6 bands for the 12C16O2, 16O12C17O and 16O12C18O isotopologue, respectively. While the uncertainty on the experimental line positions is on the order of 5×10−4 cm−1, the average deviation from the 12C16O2 calculated values provided by the most recent version of the carbon dioxide spectroscopic databank (CDSD) is −2.8×10−3 cm−1 with an root mean square (rms) deviation of 3.5×10−3 cm−1. Maximum deviations in the order of 0.02 and 0.12 cm−1 were evidenced for some bands of the 16O12C17O and 16O12C18O minor isotopologues. The obtained results improve significantly the previous measurements from Venus spectra and will be valuable to refine the sets of effective Hamiltonian parameters used to generate the CDSD database.  相似文献   

9.
Microdroplets of 15-μm diameter are subjected to ultra-short laser pulses of intensities up to 1015Wcm−2 to produce hot dense plasma. The hot electrons produced in the microdroplet plasma result in efficient generation of hard X-rays in the range 50–150keV at an irradiance as low as 8×1014Wcm−2. The X-ray source efficiency is estimated to be about 2 ×10−7%. A prepulse that is about 11ns ahead of the main pulse strongly influences the droplet plasma and the resulting X-ray emission. For a similar laser prepulse and intensity, no measurable hard X-ray emission is observed when the laser is focused on a solid target of similar composition and this indicates that liquid droplet targets are best suited for hard X-ray generation in laser–plasma interactions.  相似文献   

10.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

11.
Luminescence and decay kinetics of the Pb2+ aggregates in CsBr host crystals were measured in the 4–300 K temperature interval and in 10−10–10−3 time scale. Their emission properties are similar to those of CsPbBr3 bulk crystal showing a subnanosecond free exciton emission in the 520–540 nm spectral region and slower trapped exciton emission in the 530–580 nm spectral region. An efficient energy exchange between the free and trapped exciton states is shown by the temperature dependencies of emission spectra. The quantum size effect is demonstrated in the high energy shift and broadening of the absorption and emission spectra and an estimate of the size of the CsPbBr3-like aggregates is provided. Independent evidence of the presence of the CsPbBr3 and Cs4PbBr6 aggregated phases in the CsBr host was obtained by X-ray structural studies.  相似文献   

12.
The infrared (IR) spectrum of PD3 has been recorded in the 1580–1800 cm−1 range at a resolution of 0.0027 cm−1. About 2400 rovibrational transitions with J=K22 have been measured and assigned to the ν1 (A1) and ν3 (E) stretching fundamentals. These include 506 “perturbation-allowed” transitions with selection rules Δ(kl)=±3. Splittings of the K′′=3 lines have been observed. Effects of strong perturbations are evident in the spectrum. Therefore the rovibrational Hamiltonian adopted for the analysis explicitly takes into account the Coriolis and k-type interactions between the v1=1 and v3=1 states, and includes also several essential resonances within these states. The rotational structure in the v1=1 and v3=1 vibrational states up to J=K=18 was reproduced by fitting simultaneously all experimental data. Thirty-four parameters reproduced 1950 transitions retained in the final cycle with a standard deviation of the fit equal to 4.9 × 10−4 cm−1 (about the precision of the experimental measurements).  相似文献   

13.
In this work, a series of novel solid-type α-Al2O3-containing polyacrylonitrile (PAN)-based composite polymer electrolytes (CPE) with high conductivity and high mechanical property at room temperature has been prepared. The effect of the addition of α-Al2O3 on the properties of the PAN-based composite polymer electrolyte has been analyzed. The best conductivities obtained at room temperature is 5.7×10−4 S cm−1 from the CPE with 7.5 wt.% α-Al2O3 and 0.6 LiClO4 per PAN repeat unit. The stress–strain test result indicates that the membranes prepared possess high yield stress (73 kg cm−2) suitable for serving as separators in the solid-state lithium and lithium ion batteries and high yield elongation (225%) pliable to form good interface with electrodes. Also discussed are the effects of the addition of the ceramics on the interactions in the system and the possible conduction mechanism.  相似文献   

14.
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively.  相似文献   

15.
The p(O2)–Tδ diagram of perovskite-type SrCo0.85Fe0.10Cr0.05O3−δ was determined by the coulometric titration technique in the temperature range 770–1250 K at oxygen partial pressures from 8 10−10 to 0.5 atm. Stability of the cubic perovskite phase of SrCo0.85Fe0.10Cr0.05O3−δ, existing down to the oxygen pressures of 10−3–10−5 atm, was found to be slightly higher than that of SrCo0.80Fe0.20O3−δ, probably due to stabilization of oxygen octahedra neighboring Cr4+ cations. When the oxygen nonstoichiometry of the Cr-containing perovskite decreases from 0.47 to 0.38, the partial molar enthalpy and entropy for overall oxygen incorporation reaction vary in the ranges −165 to −60 kJ mol−1 and 90 to 150 J mol−1 K−1, respectively. Within the stability limits of the single perovskite phase, the p(O2)–Tδ diagram can be adequately described by equilibrium processes of oxygen incorporation, cobalt disproportionation and interaction of cobalt and iron cations, with the thermodynamic functions independent of defect concentrations. Increasing grain size in SrCo0.85Fe0.10Cr0.05O3−δ ceramics from submicron size to 100–200 μm has no effect on the oxygen thermodynamics. The two-electrode coulometric titration technique, based on the alternate use of electrodes for oxygen pumping and e.m.f. measurements, is described and verified by studying oxygen nonstoichiometry of La0.3Sr0.7CoO3−δ and PrOx.  相似文献   

16.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

17.
We report on the first results of a search for optical-wavelength photons mixing with hypothetical hidden-sector paraphotons in the mass range between 10−5 and 10−2 electron volts for a mixing parameter greater than 10−7. This was a generation-regeneration experiment using the “light shining through a wall” technique in which regenerated photons are searched for downstream of an optical barrier that separates it from an upstream generation region. The new limits presented here are the most stringent limits to date on the mixing parameter. The present results indicate no evidence for photon-paraphoton mixing for the range of parameters investigated.  相似文献   

18.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

19.
Transient mid infrared (MIR) absorption spectroscopy is used to investigate transitions between higher electronic subbands in semiconductor quantum well (QW) structures after interband photoexcitation with intense picosecond pulses in the visible spectral range. Our investigation focuses on the e2–e3 intersubband transition in an asymmetric undoped GaAs/AlGaAs QW structure. At an injected nonequilibrium carrier density of 1×1013 cm−2/QW, an e2–e3 absorption band at 99 meV with a spectral width of 5 meV is found. For a higher density studied, 3×1013 cm−2/QW, the band is broadened and blueshifted by 30 meV. Intersubband absorption signals are distinguished from free-carrier absorption signals in the MIR by their characteristic time behavior.  相似文献   

20.
The pure rotational spectrum of CH2F2 was recorded in the 20–100 cm−1 spectral range and analyzed to obtain rotation and centrifugal distortion constants. Analysis of the data yielded rotation constants: A = 1.6392173 ± 0.0000015, B = 0.3537342 ± 0.00000033, C = 0.3085387 ± 0.00000027, τaaaa = −(7.64 ± 0.46) × 10−5, τbbbb = −(2.076 ± 0.016) × 10−6, τcccc = −(9.29 ± 0.12) × 10−7, T1 = (4.89 ± 0.20) × 10−6, and T2 = −(1.281 ± 0.016) × 10−6cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号