首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Poisson contraction on matrix cracking in unidirectional fiber-reinforced brittle-matrix composites are studied in this paper. The fibers, initially held in the matrix by a compressive pressure due to the thermal expansion mismatch, are subjected to frictional slipping over the matrix as soon as a fiber-bridged crack is formed. The friction between the fibers and the matrix is assumed to follow the Coulomb friction law. A shear-lag model, which includes the Poisson contraction and the friction due to the relative fiber/matrix slipping, is adopted to calculate the stress and strain fields in the fibers and matrix. Using the energy balance approach, a relation for the critical matrix cracking stress for propagating of a semi-infinite fiber-bridged crack is derived. The results obtained show that the Poisson contraction has a strong effect on the predicted matrix cracking stress in brittle-matrix composites, especially in composites with a stiff matrix.  相似文献   

2.
Fracture of fiber-reinforced materials   总被引:10,自引:0,他引:10  
The fracture behaviour of fiber-reinforced materials is studied in this paper. Using a simple shear lag model, which includes friction at the debonded interface and the Poisson contraction of the fiber, the fiber-matrix debonding problem is solved. This gives the relationship between debonding load and debonded length. Interfacial friction is shown to have a significant effect on the debonding load. The fracture toughness of fiber-reinforced materials due to fiber debonding, frictional dissipation at fibre-matrix interface following debonding and other micro-fracture mechanisms is discussed with reference to strong and weak fibres. Finally, the strength and toughness of short fibre-reinforced materials are given.On leave from Harbin Shipbuilding Engineering Institute, Harbin, China  相似文献   

3.
The problem of interaction of a plane time-harmonic SH-wave with an elastic fiber of quasi-square or quasi-triangular cross section, when an interface crack is present between an infinite elastic matrix and the fiber, is considered. The modified null-field method taking into account the asymptotic behavior of the solution at crack tips is exploited for obtaining numerical results. The effects of fiber shape, fiber/matrix material combination, debonding (crack size), and direction of wave incidence on the scattering amplitude in the far zone are analyzed. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 2, pp. 245–254, March–April, 2008.  相似文献   

4.
In this paper, the computational aspects of large deformation frictional contact are presented in powder forming processes. The influence of powder–tool friction on the mechanical properties of the final product is investigated in pressing metal powders. A general formulation of continuum model is developed for frictional contact and the computational algorithm is presented for analyzing the phenomena. It is particularly concerned with the numerical modeling of frictional contact between a rigid tool and a deformable material. The finite element approach adopted is characterized by the use of penalty approach in which a plasticity theory of friction is incorporated to simulate sliding resistance at the powder–tool interface. The constitutive relations for friction are derived from a Coulomb friction law. The frictional contact formulation is performed within the framework of large FE deformation in order to predict the non-uniform relative density distribution during large deformation of powder die pressing. A double-surface cap plasticity model is employed together with the nonlinear contact friction behavior in numerical simulation of powder material. Finally, the numerical schemes are examined for efficiency and accuracy in modeling of several powder compaction processes.  相似文献   

5.
In this paper, a transient dynamic analysis of the powder compaction process is simulated by a large displacement finite element method based on a total and updated Lagrangian formulation. A combination of the Mohr–Coulomb and elliptical yield cap model, which reflects the stress state and degree of densification, is applied to describe the constitutive model of powder materials. A Coulomb friction law and a plasticity theory of friction in the context of an interface element formulation are employed in the constitutive modelling of the frictional behaviour between the die and powder. Finally, the powder behaviour during the compaction of a plain bush, a rotational flanged and a shaped tip component are analysed numerically. It is shown that the updated Lagrangian formulation, using a combination of the Mohr–Coulomb and elliptical cap model, can be effective in simulating metal powder compaction.  相似文献   

6.
A multiscale model for FRC composite structures taking into consideration the complex interactions at the scales of the fiber and microcracks is proposed. At the scale of the single fiber, a semi-analytical model characterizes the microslip behavior at the interface between the matrix and the fiber in terms of the overall composite stresses. The influence of fiber bundles on microcrack bridging and arrest is taken into account within the framework of linear elastic fracture mechanics. Upscaling to the macroscopic level using continuum micromechanics shows that the macroscopic deformation of the FRC composite is governed by a ’TERZAGHI’ like effective stress. For the finite element analyses of failure behavior at the scale of the composite structure, an ’interface solid element’ technique is used to consider localized cracking. Selected numerical and semi-analytical results together with experimental validations are provided. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
8.
We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.  相似文献   

9.
A piezoelectric fiber/elastic matrix system subjected to axially symmetric mechanical and electric loads is considered. The fiber contains a penny-shaped crack located at its center perpendicularly to the fiber. By using the Fourier and Hankel transforms, the problem is reduced to the solution of an integral equation. Numerical solutions for the crack tip fields are obtained for various crack sizes and different fiber volume fractions. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 3, pp. 301–318, May–June, 2006.  相似文献   

10.
建立了弹性-幂硬化蠕变性材料Ⅱ型界面裂纹准静态扩展的力学模型,求得了在裂纹表面自由和裂纹面有摩擦接触两种情况下,裂纹尖端应力场分离变量形式的渐近解.求解结果表明:Ⅱ型界面裂纹问题的应力、应变具有相同的奇异性;Ⅱ型界面裂纹尖端场不存在振荡奇异性;材料的幂硬化指数n和弹性模量比对裂纹尖端应力场幂硬化蠕变性材料区有着显著的影响,而弹性区仅受幂硬化指数n的影响,当n很大时,蠕变变形占主导地位,应力场趋于稳定,不随n的变化而变化;泊松比对裂纹尖端应力场的影响不明显.  相似文献   

11.
The matrix cracking models developed for cross-ply composite laminates have been poorly extended in the past to more complex geometries used in practice, and they are still under development. In this paper, a new detailed analysis of the effect of matrix cracking on the behaviour of cross-ply and [0/45]s laminates under uniaxial tension is attempted. The model used in this work is applicable both to cross-ply laminates and unbalanced systems. It gives exact closed-form expressions for all thermomechanical properties of a general symmetric laminate with cracks in arbitrary layers. The theoretical approach is backed by experimental data obtained by microscopic strain-state variation measurements within a specimen, with using the technique of laser Raman spectroscopy. Glass-fibre-reinforced epoxy systems were investigated. Embedded aramid fibres-sensors within the 0° ply and near the 0°/θ ° interface were necessary due to the poor Raman signal of glass. Using experimental Raman data, the residual strain and the stiffness reduction are determined as functions of increase in crack density. The stiffness reduction is predicted with a high accuracy, whereas the measured residual strains are larger than predicted. The good results for the reduction in the elastic modulus show that the basic assumption of the model is accurate. The difference is explained by the viscoelastic-viscoplastic behaviour of the off-axis layer in shear, which in creases the “apparent” residual strain. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 6, pp. 771–786, November–December, 2006.  相似文献   

12.
This paper investigates the elastic responses of fibrous nano-composites with imperfectly bonded interface under longitudinal shear. The proposed imperfect interface model is the shear lag (or the spring layer) model; the presented nano interfacial stress model is the Gurtin–Murdoch surface/interface model; and the three-phase confocal elliptical cylinder model is the geometry model accounting for the fiber section shape. By virtue of the complex variable method, a generalized self-consistent method is employed to derive the closed from solution of the effective antiplane shear modulus of the fibrous nano-composites with imperfect interface. Five existing solutions can be regarded as the limit form the present analytic expression. The influences of the interface elastic constant, the interfacial imperfection parameter, the size of the elliptic section fiber, the fiber section aspect ratio, the fiber volume fraction and the fiber elastic property on the effective antiplane shear modulus of the nano-composites are discussed. Particularly, numerical results demonstrate that the interfacial elastic imperfection will always cause a significant reduction in the effective antiplane shear modulus; and the fiber interface stress effect on the effective modulus of the fibrous nano-composites will weaken with the interfacial imperfection increases.  相似文献   

13.
混凝土由于水分蒸发、干缩、泌水以及骨料与砂浆变形不一致等原因会导致骨料与砂浆的界面层中产生弧形裂纹,从而对混凝土开裂强度产生很大影响.从细观角度将混凝土视作由粗骨料和水泥砂浆组成的两相复合材料,并将界面层视为粗骨料与水泥砂浆的接触层进行分析.首先基于相互作用直推估计(interaction direct derivative, IDD)法,考虑混凝土中骨料颗粒的相互作用,将施加在混凝土表征体积元的远场外荷载等效为无限大基体中含单一骨料的等效外荷载.然后,将等效外荷载转化为最大和最小主应力,基于断裂力学理论得到界面层中弧形裂纹的应力强度因子,并根据复合型裂纹幂准则判断弧形裂纹是否发生开裂,进而来研究混凝土开裂强度的变化规律.通过与数值模拟结果的比较,验证了界面弧形裂纹应力强度因子解析解的有效性,参数分析结果表明,当裂纹与最大主应力垂直或与最小主应力呈45°夹角时,骨料周围弧形裂纹最易发生开裂破坏.随着裂纹长度增加,混凝土受拉和受压开裂强度先减小后增大,且均存在最不利的裂纹长度.混凝土开裂强度随着骨料体积分数的增加而增大,随着骨料粒径的增大而减小.在裂纹长度较小时,增大骨料的弹性模量有利于提高混凝土开裂强度.骨料周围承受同号应力可以提高混凝土的开裂强度,反之,异号应力会降低开裂强度.  相似文献   

14.
A static contact problem for inhomogeneous elastic materials is studied with a non-polynomial growth of the elasticity under the Coulomb’s law of dry friction and the normal compliance condition. We demonstrate the results on existence and uniqueness of a solution to an abstract subdifferential inclusion and a variational–hemivariational inequality in the reflexive Orlicz–Sobolev space which are applied to the static elastic frictional problem.  相似文献   

15.
In this paper, a simple and efficient contact algorithm is presented for the evaluation of density distribution in three-dimensional dynamic modeling of powder compaction processes. The contact node-to-surface algorithm is employed to impose the contact constraints in large deformation frictional contact, and the contact frictional slip is modified by the Coulomb friction law to simulate the frictional behavior between the rigid punch and the work-piece. The 3D nonlinear contact friction algorithm is employed together with a double-surface cap plasticity model within the framework of large finite element deformation in order to predict the non-uniform relative density distribution during the dynamic simulation of powder die-pressing. The accuracy and robustness of contact algorithm is verified by the impact analysis of two elastic rods, which is compared with the analytical solution. Finally, the performance of computational schemes is illustrated in dynamic modeling of a set of powder components.  相似文献   

16.
This paper aims to investigate the effect of microstructure parameters (such as the cross-sectional shape of fibers and fiber volume fraction) on the stress–strain behavior of unidirectional composites subjected to off-axis loadings. A micromechanical model with a periodic microstructure is used to analyze a representative volume element. The fiber is linearly elastic, but the matrix is nonlinear. The Bodner–Partom model is used to characterize the nonlinear response of the fiber-reinforced composites. The analytical results obtained show that the flow stress of composites with square fibers is higher than with circular or elliptic ones. The difference in the elastoplastic response, which is affected by the fiber shape, can be disregarded if the fiber volume fraction is smaller than 0.15. Furthermore, the effect of fiber shape on the stress–strain behavior of the composite can be ignored if the off-axis loading angle is smaller than 30°.  相似文献   

17.
A model of a glass-reinforced plastic with short unidirectional fibers is proposed. The distribution of tensile stresses in the polymer matrix and the fibers and the shear stress distribution at the interface in uniaxial tension are investigated in the elastic formulation.Riga Polytechnic Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1030–1035, November–December, 1971.  相似文献   

18.
The torsion of an infinite non-homogeneous elastic cylindrical fiber, containing a penny-shaped crack embedded in an infinite non-homogeneous elastic material is considered. The cylinder and elastic medium have different shear moduli. Using integral transformation techniques the solution of the problem is reduced to the solution of dual integral equations. Later on the solution of the dual integral equations is transformed into the solution of a Fredholm integral equation of the second kind, which is solved numerically. Closed form expressions are obtained for the stress intensity factor and numerical values for the stress intensity factors are graphed to demonstrate the effect of non-homogeneity of the fiber and infinite medium. In the end the stress singularity is obtained when the crack touches the infinite non-homogeneous medium (matrix).  相似文献   

19.
A model for a flat isolated layer of a unidirectional fibrous composite with a regular structure is constructed to investigate the possible variants of its failure development. An integrodifferential equation for determining the forces in fibers is obtained. Primary attention is focused on examining the failure process after the rupture of one fiber. This causes a drastic redistribution of stresses, which can lead to a failure of adjacent fibers owing to the increased load on them, to an interfacial shear fracture, and to the matrix cracking. It is shown that the development of layer failure is determined by the strength of fibers, the crack resistance of the matrix in axial tension and transverse shear, and also by the adhesion strength of the matrix-fiber interface. The sufficient conditions of applicability of the brittle fracture model are formulated.  相似文献   

20.
We prove the existence of a solution for an elastic frictional, quasistatic, contact problem with a Signorini non-penetration condition and a local Coulomb friction law. The problem is formulated as a time-dependent variational problem and is solved by the aid of an established shifting technique used to obtain increased regularity at the contact surface. The analysis is carried out by the aid of auxiliary problems involving regularized friction terms and a so-called normal compliance penalization technique. \par Accepted 15 May 2000. Online publication 6 October 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号