首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the problem of setting optimal incentives for a portfolio manager hired by an investor who wants to induce ambiguity–robust portfolio choices with respect to estimation errors in expected returns. Adopting a worst-case max–min approach we obtain the optimal compensation in various cases where the investor and the manager, adopt or relinquish an ambiguity averse attitude. We also provide examples of applications to real market data.  相似文献   

2.
We consider the optimization problems maxzΩ minxK p(z, x) and minx K maxz Ω p(z, x) where the criterion p is a polynomial, linear in the variables z, the set Ω can be described by LMIs, and K is a basic closed semi-algebraic set. The first problem is a robust analogue of the generic SDP problem maxz Ω p(z), whereas the second problem is a robust analogue of the generic problem minx K p(x) of minimizing a polynomial over a semi-algebraic set. We show that the optimal values of both robust optimization problems can be approximated as closely as desired, by solving a hierarchy of SDP relaxations. We also relate and compare the SDP relaxations associated with the max-min and the min-max robust optimization problems.  相似文献   

3.
We propose an algorithm for the global optimization of continuous minimax problems involving polynomials. The method can be described as a discretization approach to the well known semi-infinite formulation of the problem. We proceed by approximating the infinite number of constraints using tools and techniques from semidefinite programming. We then show that, under appropriate conditions, the SDP approximation converges to the globally optimal solution of the problem. We also discuss the numerical performance of the method on some test problems. Financial support of EPSRC Grant GR/T02560/01 gratefully acknowledged.  相似文献   

4.
The deregulation of electricity markets increases the financial risk faced by retailers who procure electric energy on the spot market to meet their customers’ electricity demand. To hedge against this exposure, retailers often hold a portfolio of electricity derivative contracts. In this paper, we propose a multistage stochastic mean-variance optimisation model for the management of such a portfolio. To reduce computational complexity, we apply two approximations: we aggregate the decision stages and solve the resulting problem in linear decision rules (LDR). The LDR approach consists of restricting the set of recourse decisions to those affine in the history of the random parameters. When applied to mean-variance optimisation models, it leads to convex quadratic programs. Since their size grows typically only polynomially with the number of periods, they can be efficiently solved. Our numerical experiments illustrate the value of adaptivity inherent in the LDR method and its potential for enabling scalability to problems with many periods.  相似文献   

5.
Conditional Value at Risk (CVaR) is widely used in portfolio optimization as a measure of risk. CVaR is clearly dependent on the underlying probability distribution of the portfolio. We show how copulas can be introduced to any problem that involves distributions and how they can provide solutions for the modeling of the portfolio. We use this to provide the copula formulation of the CVaR of a portfolio. Given the critical dependence of CVaR on the underlying distribution, we use a robust framework to extend our approach to Worst Case CVaR (WCVaR). WCVaR is achieved through the use of rival copulas. These rival copulas have the advantage of exploiting a variety of dependence structures, symmetric and not. We compare our model against two other models, Gaussian CVaR and Worst Case Markowitz. Our empirical analysis shows that WCVaR can asses the risk more adequately than the two competitive models during periods of crisis.  相似文献   

6.
Mustafa Ç. Pınar 《Optimization》2013,62(11):1419-1432
We give a closed-form solution to the single-period portfolio selection problem with a Value-at-Risk (VaR) constraint in the presence of a set of risky assets with multivariate normally distributed returns and the risk-less account, without short sales restrictions. The result allows to obtain a very simple, myopic dynamic portfolio policy in the multiple period version of the problem. We also consider mean-variance portfolios under a probabilistic chance (VaR) constraint and give an explicit solution. We use this solution to calculate explicitly the bonus of a portfolio manager to include a VaR constraint in his/her portfolio optimization, which we refer to as the price of a VaR constraint.  相似文献   

7.
Robust portfolio optimization aims to maximize the worst-case portfolio return given that the asset returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market crashes, that is, if the asset returns materialize far outside of the uncertainty set. We propose a novel robust optimization model for designing portfolios that include European-style options. This model trades off weak and strong guarantees on the worst-case portfolio return. The weak guarantee applies as long as the asset returns are realized within the prescribed uncertainty set, while the strong guarantee applies for all possible asset returns. The resulting model constitutes a convex second-order cone program, which is amenable to efficient numerical solution procedures. We evaluate the model using simulated and empirical backtests and analyze the impact of the insurance guarantees on the portfolio performance.  相似文献   

8.
This paper extends the Log-robust portfolio management approach to the case with short sales, i.e., the case where the manager can sell shares he does not yet own. We model the continuously compounded rates of return, which have been established in the literature as the true drivers of uncertainty, as uncertain parameters belonging to polyhedral uncertainty sets, and maximize the worst-case portfolio wealth over that set in a one-period setting. The degree of the manager’s aversion to ambiguity is incorporated through a single, intuitive parameter, which determines the size of the uncertainty set. The presence of short-selling requires the development of problem-specific techniques, because the optimization problem is not convex. In the case where assets are independent, we show that the robust optimization problem can be solved exactly as a series of linear programming problems; as a result, the approach remains tractable for large numbers of assets. We also provide insights into the structure of the optimal solution. In the case of correlated assets, we develop and test a heuristic where correlation is maintained only between assets invested in. In computational experiments, the proposed approach exhibits superior performance to that of the traditional robust approach.  相似文献   

9.
To deal with the robust portfolio selection problem where only partial information on the exit time distribution and on the conditional distribution of portfolio return is available, we extend the worst-case VaR approach and formulate the corresponding problems as semi-definite programs. Moreover, we present some numerical results with real market data.  相似文献   

10.
In this paper we extend standard dynamic programming results for the risk sensitive optimal control of discrete time Markov chains to a new class of models. The state space is only finite, but now the assumptions about the Markov transition matrix are much less restrictive. Our results are then applied to the financial problem of managing a portfolio of assets which are affected by Markovian microeconomic and macroeconomic factors and where the investor seeks to maximize the portfolio's risk adjusted growth rate.  相似文献   

11.
In this paper, we present a new multiperiod portfolio selection with maximum absolute deviation model. The investor is assumed to seek an investment strategy to maximize his/her terminal wealth and minimize the risk. One typical feature is that the absolute deviation is employed as risk measure instead of classical mean variance method. Furthermore, risk control is considered in every period for the new model. An analytical optimal strategy is obtained in a closed form via dynamic programming method. Algorithm with some examples is also presented to illustrate the application of this model.  相似文献   

12.
We consider relaxation of almost sure constraint in dynamic stochastic optimization problems and their convergence. We show an epiconvergence result relying on the Kudo convergence of σ-algebras and continuity of the objective and constraint operators. We present classical constraints and objective functions with conditions ensuring their continuity. We are motivated by a Lagrangian decomposition algorithm, known as Dual Approximate Dynamic Programming, that relies on relaxation, and can also be understood as a decision rule approach in the dual.  相似文献   

13.
江波  朱喜华 《运筹学学报》2021,25(3):133-142
本文考虑了工件具有任意尺寸且机器有容量限制的混合分批平行机排序问题。在该问题中, 一个待加工的工件集需在多台平行批处理机上进行加工。每个工件有它的加工时间和尺寸, 每台机器可以同时处理多个工件, 称为一个批, 只要这些工件尺寸之和不超过其容量; 一个批的加工时间等于该批中工件的最大加工时间和总加工时间的加权和; 目标函数是极小化最大完工时间。该问题包含一维装箱问题为其特殊情形, 为强NP-困难的。对此给出了一个$\left( {2 + 2\alpha+\alpha^{2}}\right)$-近似算法, 其中$\alpha$为给定的权重参数, 满足考虑了不同于Goldfarb和Iyengar (2003)的因子模型,通过横截面回归分析以及Fama-MacBeth估计构造了关于资产的平均收益向量和协方差矩阵的不确定性集合(置信区域)。基于这些不确定性集合以及Markowitz“均值-方差模型”的鲁棒投资组合问题,提出了多个鲁棒投资组合问题,并对应的推导出其等价的半正定规划形式,使得问题可以在多项式时间内求解。  相似文献   

14.
This paper addresses a new uncertainty set—interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.  相似文献   

15.
Since Markowitz (1952) formulated the portfolio selection problem, many researchers have developed models aggregating simultaneously several conflicting attributes such as: the return on investment, risk and liquidity. The portfolio manager generally seeks the best combination of stocks/assets that meets his/her investment objectives. The Goal Programming (GP) model is widely applied to finance and portfolio management. The aim of this paper is to present the different variants of the GP model that have been applied to the financial portfolio selection problem from the 1970s to nowadays.  相似文献   

16.
A Markowitz-type portfolio selection problem is to minimize a deviation measure of portfolio rate of return subject to constraints on portfolio budget and on desired expected return. In this context, the inverse portfolio problem is finding a deviation measure by observing the optimal mean-deviation portfolio that an investor holds. Necessary and sufficient conditions for the existence of such a deviation measure are established. It is shown that if the deviation measure exists, it can be chosen in the form of a mixed CVaR-deviation, and in the case of n risky assets available for investment (to form a portfolio), it is determined by a combination of (n + 1) CVaR-deviations. In the later case, an algorithm for constructing the deviation measure is presented, and if the number of CVaR-deviations is constrained, an approximate mixed CVaR-deviation is offered as well. The solution of the inverse portfolio problem may not be unique, and the investor can opt for the most conservative one, which has a simple closed-form representation.  相似文献   

17.
We study optimal asset allocation in a crash-threatened financial market with proportional transaction costs. The market is assumed to be either in a normal state, in which the risky asset follows a geometric Brownian motion, or in a crash state, in which the price of the risky asset can suddenly drop by a certain relative amount. We only assume the maximum number and the maximum relative size of the crashes to be given and do not make any assumptions about their distributions. For every investment strategy, we identify the worst-case scenario in the sense that the expected utility of terminal wealth is minimized. The objective is then to determine the investment strategy which yields the highest expected utility in its worst-case scenario. We solve the problem for utility functions with constant relative risk aversion using a stochastic control approach. We characterize the value function as the unique viscosity solution of a second-order nonlinear partial differential equation. The optimal strategies are characterized by time-dependent free boundaries which we compute numerically. The numerical examples suggest that it is not optimal to invest any wealth in the risky asset close to the investment horizon, while a long position in the risky asset is optimal if the remaining investment period is sufficiently large.  相似文献   

18.
本文对于信用资产组合的优化问题给出了一个稳健的模型,所建模型涉及了条件在险值(CVaR)风险度量以及具有补偿限制的随机线性规划框架,其思想是在CVaR与信用资产组合的重构费用之间进行权衡,并降低解对于随机参数的实现的敏感性.为求解相应的非线性规划,本文将基本模型转化为一系列的线性规划的求解问题.  相似文献   

19.
Robust portfolio modeling (RPM) [Liesiö, J., Mild, P., Salo, A., 2007. Preference programming for robust portfolio modeling and project selection. European Journal of Operational Research 181, 1488–1505] supports project portfolio selection in the presence of multiple evaluation criteria and incomplete information. In this paper, we extend RPM to account for project interdependencies, incomplete cost information and variable budget levels. These extensions lead to a multi-objective zero-one linear programming problem with interval-valued objective function coefficients for which all non-dominated solutions are determined by a tailored algorithm. The extended RPM framework permits more comprehensive modeling of portfolio problems and provides support for advanced benefit–cost analyses. It retains the key features of RPM by providing robust project and portfolio recommendations and by identifying projects on which further attention should be focused. The extended framework is illustrated with an example on product release planning.  相似文献   

20.
We develop algorithms to construct inner approximations of the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号