首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variable neighborhood search heuristic for periodic routing problems   总被引:1,自引:0,他引:1  
The aim of this paper is to propose a new heuristic for the Periodic Vehicle Routing Problem (PVRP) without time windows. The PVRP extends the classical Vehicle Routing Problem (VRP) to a planning horizon of several days. Each customer requires a certain number of visits within this time horizon while there is some flexibility on the exact days of the visits. Hence, one has to choose the visit days for each customer and to solve a VRP for each day. Our method is based on Variable Neighborhood Search (VNS). Computational results are presented, that show that our approach is competitive and even outperforms existing solution procedures proposed in the literature. Also considered is the special case of a single vehicle, i.e. the Periodic Traveling Salesman Problem (PTSP). It is shown that slight changes of the proposed VNS procedure is also competitive for the PTSP.  相似文献   

2.
We suggest a new heuristic for solving unconstrained continuous optimization problems. It is based on a generalized version of the variable neighborhood search metaheuristic. Different neighborhoods and distributions, induced from different metrics are ranked and used to get random points in the shaking step. We also propose VNS for solving constrained optimization problems. The constraints are handled using exterior point penalty functions within an algorithm that combines sequential and exact penalty transformations. The extensive computer analysis that includes the comparison with genetic algorithm and some other approaches on standard test functions are given. With our approach we obtain encouraging results.  相似文献   

3.
POPMUSIC— Partial OPtimization Metaheuristic Under Special Intensification Conditions — is a template for tackling large problem instances. This metaheuristic has been shown to be very efficient for various hard combinatorial problems such as p-median, sum of squares clustering, vehicle routing, map labelling and location routing. A key point for treating large Travelling Salesman Problem (TSP) instances is to consider only a subset of edges connecting the cities. The main goal of this article is to present how to build a list of good candidate edges with a complexity lower than quadratic in the context of TSP instances given by a general function. The candidate edges are found with a technique exploiting tour merging and the POPMUSIC metaheuristic. When these candidate edges are provided to a good local search engine, high quality solutions can be found quite efficiently. The method is tested on TSP instances of up to several million cities with different structures (Euclidean uniform, clustered, 2D to 5D, grids, toroidal distances). Numerical results show that solutions of excellent quality can be obtained with an empirical complexity lower than quadratic without exploiting the geometrical properties of the instances.  相似文献   

4.
The Probabilistic Traveling Salesman Problem is a variation of the classic traveling salesman problem and one of the most significant stochastic routing problems. In probabilistic traveling salesman problem only a subset of potential customers need to be visited on any given instance of the problem. The number of customers to be visited each time is a random variable. In this paper, a variant of the well-known Greedy Randomized Adaptive Search Procedure (GRASP), the Expanding Neighborhood Search–GRASP, is proposed for the solution of the probabilistic traveling salesman problem. expanding neighborhood search–GRASP has been proved to be a very efficient algorithm for the solution of the traveling salesman problem. The proposed algorithm is tested on a numerous benchmark problems from TSPLIB with very satisfactory results. Comparisons with the classic GRASP algorithm and with a Tabu Search algorithm are also presented. Also, a comparison is performed with the results of a number of implementations of the Ant Colony Optimization algorithm from the literature and in six out of ten cases the proposed algorithm gives a new best solution.  相似文献   

5.
The x-and-y-axes travelling salesman problem forms a special case of the Euclidean TSP, where all cities are situated on the x-axis and on the y-axis of an orthogonal coordinate system of the Euclidean plane. By carefully analyzing the underlying combinatorial and geometric structures, we show that this problem can be solved in polynomial time. The running time of the resulting algorithm is quadratic in the number of cities.  相似文献   

6.
This paper presents a modified Variable Neighborhood Search (VNS) heuristic algorithm for solving the Discrete Ordered Median Problem (DOMP). This heuristic is based on new neighborhoods’ structures that allow an efficient encoding of the solutions of the DOMP avoiding sorting in the evaluation of the objective function at each considered solution. The algorithm is based on a data structure, computed in preprocessing, that organizes the minimal necessary information to update and evaluate solutions in linear time without sorting. In order to investigate the performance, the new algorithm is compared with other heuristic algorithms previously available in the literature for solving DOMP. We report on some computational experiments based on the well-known N-median instances of the ORLIB with up to 900 nodes. The obtained results are comparable or superior to existing algorithms in the literature, both in running times and number of best solutions found.  相似文献   

7.
This paper presents variable neighborhood search (VNS) for the problem of finding the global minimum of a nonconvex function. The variable neighborhood search, which changes systematically neighborhood structures in the search for finding a better solution, is used to guide a set of standard improvement heuristics. This algorithm was tested on some standard test functions, and successful results were obtained. Its performance was compared with the other algorithms, and observed to be better.  相似文献   

8.
This paper concerns a generalization of the traveling salesman problem (TSP) called multi-commodity one-to-one pickup-and-delivery traveling salesman problem (m-PDTSP) in which cities correspond to customers providing or requiring known amounts of m different commodities, and the vehicle has a given upper-limit capacity. Each commodity has exactly one origin and one destination, and the vehicle must visit each customer exactly once. The problem can also be defined as the capacitated version of the classical TSP with precedence constraints. This paper presents two mixed integer linear programming models, and describes a decomposition technique for each model to find the optimal solution. Computational experiments on instances from the literature and randomly generated compare the techniques and show the effectiveness of our implementation.  相似文献   

9.
In real life scheduling, variations of the standard traveling salesman problem are very often encountered. The aim of this work is to present a new heuristic method for solving three such special instances with a common approach. The proposed algorithm uses a variant of the threshold accepting method, enhanced with intense local search, while the candidate solutions are produced through an insertion heuristic scheme. The main characteristic of the algorithm is that it does not require modifications and parameter tuning in order to cope with the three different problems. Computational results on a variety of real life and artificial problems are presented at the end of this work and prove the efficiency and the ascendancy of the proposed method over other algorithms found in the literature.  相似文献   

10.
In this study, we improved the variable neighborhood search (VNS) algorithm for solving uncapacitated multilevel lot-sizing (MLLS) problems. The improvement is twofold. First, we developed an effective local search method known as the Ancestors Depth-first Traversal Search (ADTS), which can be embedded in the VNS to significantly improve the solution quality. Second, we proposed a common and efficient approach for the rapid calculation of the cost change for the VNS and other generate-and-test algorithms. The new VNS algorithm was tested against 176 benchmark problems of different scales (small, medium, and large). The experimental results show that the new VNS algorithm outperforms all of the existing algorithms in the literature for solving uncapacitated MLLS problems because it was able to find all optimal solutions (100%) for 96 small-sized problems and new best-known solutions for 5 of 40 medium-sized problems and for 30 of 40 large-sized problems.  相似文献   

11.
The capacitated arc routing problem (CARP) focuses on servicing edges of an undirected network graph. A wide spectrum of applications like mail delivery, waste collection or street maintenance outlines the relevance of this problem. A realistic variant of the CARP arises from the need of intermediate facilities (IFs) to load up or unload the service vehicle and from tour length restrictions. The proposed Variable Neighborhood Search (VNS) is a simple and robust solution technique which tackles the basic problem as well as its extensions. The VNS shows excellent results on four different benchmark sets. Particularly, for all 120 instances the best known solution could be found and in 71 cases a new best solution was achieved.  相似文献   

12.
This paper focuses on introducing a concept of diversified local search strategy under the scatter search framework for the probabilistic traveling salesman problem (PTSP). Different combinations of three commonly used local search methods in the PTSP, i.e., 1-shift, 2-opt, and 3-opt, were used to investigate its effects. A set of numerical experiments were conducted to test the validity of the proposed strategy based on randomly generated test instances. The numerical results and the permutation test showed that the diversified local search strategy, especially by combining 1-shift and 2-opt algorithms, can most effectively solve the homogeneous and heterogeneous PTSP in most of the tested instances in comparison with the single local search strategy under scatter search framework.  相似文献   

13.
The generalized traveling salesman problem (GTSP) is a well-known combinatorial optimization problem with a host of applications. It is an extension of the Traveling Salesman Problem (TSP) where the set of cities is partitioned into so-called clusters, and the salesman has to visit every cluster exactly once.  相似文献   

14.
This paper considers the application of a variable neighborhood search (VNS) algorithm for finite-horizon (H stages) Markov Decision Processes (MDPs), for the purpose of alleviating the “curse of dimensionality” phenomenon in searching for the global optimum. The main idea behind the VNSMDP algorithm is that, based on the result of the stage just considered, the search for the optimal solution (action) of state x in stage t is conducted systematically in variable neighborhood sets of the current action. Thus, the VNSMDP algorithm is capable of searching for the optimum within some subsets of the action space, rather than over the whole action set. Analysis on complexity and convergence attributes of the VNSMDP algorithm are conducted in the paper. It is shown by theoretical and computational analysis that, the VNSMDP algorithm succeeds in searching for the global optimum in an efficient way.  相似文献   

15.
In this paper, we present two general variable neighborhood search (GVNS) based variants for solving the traveling salesman problem with draft limits (TSPDL), a recent extension of the traveling salesman problem. TSPDL arises in the context of maritime transportation. It consists of finding optimal Hamiltonian tour for a given ship which has to visit and deliver products to a set of ports while respecting the draft limit constraints. The proposed methods combine ideas in sequential variable neighborhood descent within GVNS. They are tested on a set of benchmarks from the literature as well as on a new one generated by us. Computational experiments show remarkable efficiency and effectiveness of our new approach. Moreover, new set of benchmarks instances is generated.  相似文献   

16.
This paper presents a General Variable Neighborhood Search (GVNS) heuristic for the Traveling Salesman Problem with Time Windows (TSPTW). The heuristic is composed by both constructive and optimization stages. In the first stage, the heuristic constructs a feasible solution using VNS, and in the optimization stage the heuristic improves the feasible solution with a General VNS heuristic. Both constructive and optimization stages take advantage of elimination tests, partial neighbor evaluation and neighborhood partitioning techniques. Experimental results show that this approach is efficient, reducing significantly the computation time and improving some best known results from the literature.  相似文献   

17.
A cutting plane algorithm for the exact solution of the symmetric travelling salesman problem (TSP) is proposed. The real tours on a usually incomplete road network, which are in general non-Hamiltonian, are characterized directly by an integer linear programming model. The algorithm generates special cutting planes for this model. Computational results for real road networks with up to 292 visiting places are reported, as well as for classical problems of the literature with up to 120 cities. Some of the latter problems have been solved for the first time with a pure cutting plane approach.  相似文献   

18.
This paper presents a solution methodology for the heterogeneous fleet vehicle routing problem with time windows. The objective is to minimize the total distribution costs, or similarly to determine the optimal fleet size and mix that minimizes both the total distance travelled by vehicles and the fixed vehicle costs, such that all problem’s constraints are satisfied. The problem is solved using a two-phase solution framework based upon a hybridized Tabu Search, within a new Reactive Variable Neighborhood Search metaheuristic algorithm. Computational experiments on benchmark data sets yield high quality solutions, illustrating the effectiveness of the approach and its applicability to realistic routing problems. This work is supported by the General Secretariat for Research and Technology of the Hellenic Ministry of Development under contract GSRT NM-67.  相似文献   

19.
The probabilistic traveling salesman problem is a paradigmatic example of a stochastic combinatorial optimization problem. For this problem, recently an estimation-based local search algorithm using delta evaluation has been proposed. In this paper, we adopt two well-known variance reduction procedures in the estimation-based local search algorithm: the first is an adaptive sampling procedure that selects the appropriate size of the sample to be used in Monte Carlo evaluation; the second is a procedure that adopts importance sampling to reduce the variance involved in the cost estimation. We investigate several possible strategies for applying these procedures to the given problem and we identify the most effective one. Experimental results show that a particular heuristic customization of the two procedures increases significantly the effectiveness of the estimation-based local search.  相似文献   

20.
We present a new general variable neighborhood search approach for the uncapacitated single allocation p-hub median problem in networks. This NP hard problem is concerned with locating hub facilities in order to minimize the traffic between all origin-destination pairs. We use three neighborhoods and efficiently update data structures for calculating new total flow in the network. In addition to the usual sequential strategy, a new nested strategy is proposed in designing a deterministic variable neighborhood descent local search. Our experimentation shows that general variable neighborhood search based heuristics outperform the best-known heuristics in terms of solution quality and computational effort. Moreover, we improve the best-known objective values for some large Australia Post and PlanetLab instances. Results with the new nested variable neighborhood descent show the best performance in solving very large test instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号