首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with an electron interacting strongly with both bulk longitudinal optical (LO) phonons and interface (IF) optical phonons in which we adopt and generalize the Tokuda's variational method for studying the interface polaron properties in polar crystals at zero temperature, In our approach, we can reduce the Hamiltollian equation of the system to a pair of integro-differential equations in two variational parameters of the electron wavefunction from which we can calculate various physical properties of an interface polaron including the ground state energy, average numbers of interacting phonons, the average distance from the interface and the anisotropic effective masses of the interface polaron. Numerical results are obtained explicitly for LiF crystal interfaced with NaF crystal as well as other similar systems with varying physical constants, which show the typical trends of variations for the effects of strong electron-phonon interactions on different physical properties of an interface polaron.  相似文献   

2.
3.
Haiqin Wang 《中国物理 B》2022,31(10):104602-104602
The variational principle of minimum free energy (MFEVP) has been widely used in research of soft matter statics. The MFEVP can be used not only to derive equilibrium equations (including both bulk equations and boundary conditions), but also to develop direct variational methods (such as Ritz method) to find approximate solutions to these equilibrium equations. We apply these variational methods to study long-range force transmission in nonlinear elastic biopolymer gels. It is shown that the slow decay of cell-induced displacements measured experimentally for fibroblast spheroids in three-dimensional fibrin gels can be well explained by variational approximations based on the three-chain model of biopolymer gels.  相似文献   

4.
The variational many-body approach or, more generally, the method of correlated basis functions initiated for a quantitative analysis of strongly interacting quantum fluids may be adapted with minor modifications for exploring the properties of lattice models. This is demonstrated by performing an explicit analysis of the paramagnetic ground state of the Hubbard model. In a first step of the approximation scheme we represent the correlated state by a spin-dependent wave function of Jastrow-type. We analyze in detail the associated density-matrix elements and set up the corresponding Fermi hypernetted-chain equations which determine the irreducible constituents of these quantities. The solutions are discussed and constructed by iteration in terms of cluster approximants. Specializing the input data and the formal results provides a Fermi hypernetted-chain analysis of the correlations induced by a ground state wave function of the Gutzwiller form.  相似文献   

5.
《Nuclear Physics B》1986,273(1):125-136
We formulate a Palatini version of the Regge calculus by constructing a discrete torsion field on the simplicial manifold. The action has two components, the original Regge action and an additional action for the torsion field. In the absence of matter the variational equations reduce the torsion field to zero. Matter fields can act as sources of torsion.  相似文献   

6.
B R Sitaram 《Pramana》1995,44(4):295-302
The invariants of chaotic bounded Hamiltonian systems and their relation to the solutions of the first variational equations of the equations of motion are studied. We show that these invariants are characterized by the fact that they either lose the property of differentiability as functions on phase space or that a certain formal power series defined in terms of the derivatives of the invariants has zero radius of convergence. For a specific example, we show that the former possibility appears to apply.  相似文献   

7.
Based on the energy functional and variational method, we present a new method to investigate the ground state properties for a weakly interacting Bose-condensed gas in an anisotropic harmonic trap at zero temperature. With this method we are able to find the analytic expression of the ground-state wavefunction and to explore the relevant quantities, such as energy, chemical potential, and the aspect ratio of the velocity distribution. These results agree well with previous ground state numerical solutions of the Gross-Pitaevskii equation given by Dalfovo et al. [Phys. Rev. A 53 (1996) 2477] This new method is simple compared to other methods used to solve numerically the Gross-Pitaevskii equation, and one can obtain analytic and reliable results.  相似文献   

8.
D. E. GALLI  L. REATTO 《Molecular physics》2013,111(11):1697-1703
We present two recent advances in the simulation of 4He in the condensed phase at zero temperature. Within the variational theory of strongly interacting bosons we have studied a cluster of 4He atoms with one alkali ion K+. For the wave function we have used a new shadow wave function (SWF) in which the coupling between one 4He atom and its shadow variable depends on its distance from the ion. This substantially improves the energy. The first shell around the ion contains 14 atoms which are spatially ordered. However the atoms of the first shell are not completely localized and frequent exchanges with atoms which are further from the ion take place. This also suggests that at least for the ion K+ the atoms of the first shell participate in the superfluidity. We have also introduced a new extension of the path integral ground state (PIGS) method which is able to compute exact ground state expectation values without extrapolations and with a SWF as the trial variational wave function to project on the ground state. This is an important extension which opens up the possibility of studying disorder phenomena in the solid phase by an exact method at zero temperature. We have applied this technique to compute the energy of formation of a vacancy at different densities in the solid phase of 4He. This computation confirms the variational result that a vacancy is a delocalized defect in the low density helium solid.  相似文献   

9.
In this paper, we study a coupled system of equations on oriented compact 4-manifolds which we call the Bach–Merkulov equations. These equations can be thought of as the conformally invariant version of the classical Einstein–Maxwell equations. Inspired by the work of C. LeBrun on Einstein–Maxwell equations on compact Kähler surfaces, we give a variational characterization of solutions to Bach–Merkulov equations as critical points of the Weyl functional. We also show that extremal Kähler metrics are solutions to these equations, although, contrary to the Einstein–Maxwell analogue, they are not necessarily minimizers of the Weyl functional. We illustrate this phenomenon by studying the Calabi action on Hirzebruch surfaces.  相似文献   

10.
Differential-geometry structures associated with Lagrangians are studied. A relative invariant E embraced by an extension of fundamental object is constructed (in the paper, E is referred to as the Euler relative invariant) such that the equation E = 0 is an invariant representation of the Euler equation for the variational functional. For this reason, a nonvariational interpretation of the Euler equations becomes possible, because the Euler equations need not be connected with the variational problem, and one can regard the equations from the very beginning as an equation arising when equating the Euler relative invariant to zero. Local diffeomorphisms between two structures associated with Lagrangians are also discussed. The theorem concerning conditions under which the vanishing condition for the Euler relative invariant of one of these structures leads to vanishing of the Euler invariant relative of the other structure can be treated as a nonvariational interpretation of Nöther’s theorem.  相似文献   

11.
We study two types of bright solitons in an attractive Bose-Einstein condensate with a spin-orbit interaction. By solving the coupled nonlinear Schr odinger equations with the variational method and the imaginary time evolution method,fundamental properties of solitons are carefully investigated in different parameter regimes. It is shown that the detuning between the Raman beam and energy states of the atoms dominates the ground state type and spin polarization strength.The soliton dynamics is also studied for various moving velocities for zero and nonzero detuning cases. We find that the shape of individual component solitons can be maintained when the moving speed of solitons is low and the detuning is small in the coupled harmonically trapped pseudo-spin polarization Bose-Einstein condensate.  相似文献   

12.
We present perfect fluid Friedmann–Robertson–Walker quantum cosmological models in the presence of negative cosmological constant. In this work the Schutz’s variational formalism is applied for radiation, dust, cosmic string, and domain wall dominated Universes with positive, negative, and zero constant spatial curvature. In this approach the notion of time can be recovered. These give rise to Wheeler–DeWitt equations for the scale factor. We find their eigenvalues and eigenfunctions by using Spectral Method. After that, we use the eigenfunctions in order to construct wave packets for each case and evaluate the time-dependent expectation value of the scale factors, which are found to oscillate between finite maximum and minimum values. Since the expectation values of the scale factors never tends to the singular point, we have an initial indication that these models may not have singularities at the quantum level.  相似文献   

13.
《Nuclear Physics A》1988,476(3):448-470
We develop techniques for summing parquet diagrams for systems with two-body interactions with spin, tensor, and isospin components. For boson systems, we sum the same set of diagrams which have been used to derive the optimized hypernetted-chain variational theory when the force is independent of spin and isospin. The present derivation leads to unique local approximations in each of the six independent channels. Singularities in any of these channels at either low or high density correspond to instabilities of the physical system. In contrast to previous variational approaches, the need for commutator terms does not arise in this limit. We derive an energy functional from which the equations of motion may be obtained by functional differentiation. The equations of motion may be solved by a paired-phonon-analysis method which requires time proportional to the number of channels present. Although the primary emphasis of this theory is to suggest ways of including realistic nuclear forces in fermion theories, we present some model calculations which demonstrate the capabilities of the present approach.  相似文献   

14.
A K Rajagopal 《Pramana》1975,4(3):140-152
The expressions for the longitudinal dielectric function, spin and orbital susceptibilities in the static, long wavelength limit are evaluated by solving the corresponding linearized vertex functions exactly in this limit. The plasma dispersion relation to leading order in the long wave limit is similarly obtained. These are compared with the corresponding results obtained previoulsy by us by a variational solution to the same vertex equations. It is established that the variational method gives the exact results in the static, zero wave vector limit, involving the proper renormalizations. The plasma dispersion relation is found to be the same as in the exact calculation whereas the coefficient of q2 in the static density correlation function has an important additional contribution to the variational result. Applications of these results are briefly discussed.  相似文献   

15.
Linear half-space problems can be used to solve domain decomposition problems between Boltzmann and aerodynamic equations. A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented. Relations with the so-called variational methods are discussed. In particular, we stress the connection between these methods and Chapman-Enskog type expansions.  相似文献   

16.
张天宝  俞玄平  陈阿海 《物理学报》2015,64(15):156402-156402
本文通过数值求解有限温度下一维均匀费米Gaudin-Yang模型的热力学Bethe-ansatz方程, 研究了此模型的基本性质,得到了在给定的温度或给定的相互作用下, 化学势、相互作用、粒子密度和熵的相互变化图像. 对结果分析发现, 在给定温度和相互作用下, 熵随着化学势的变化有一个量子临界区域.  相似文献   

17.
We rely on a variational approach to derive a set of equations governing a trapped self-interacting Bose gas at finite temperature. In this work, we analyze the static situation both at zero and finite temperature in the Thomas-Fermi limit for the repulsive case. We derive simple analytic expressions for the condensate properties at finite temperature. The noncondensate and anomalous density profiles are also analyzed in terms of the condensate fraction. The results are quite encouraging owing to the simplicity of the formalism.  相似文献   

18.
An interesting discretization method for Helmholtz equations was introduced in B. Després [1]. This method is based on the ultra weak variational formulation (UWVF) and the wave shape functions, which are exact solutions of the governing Helmholtz equation. In this paper we are concerned with fast solver for the system generated by the method in [1]. We propose a new preconditioner for such system, which can be viewed as a combination between a coarse solver and the block diagonal preconditioner introduced in [13]. In our numerical experiments, this preconditioner is applied to solve both two-dimensional and three-dimensional Helmholtz equations, and the numerical results illustrate that the new preconditioner is much more efficient than the original block diagonal preconditioner.  相似文献   

19.
20.
We extend here the many-times formalism, formerly used mainly for particles moving in given classical fields, to interacting particles. In order to minimize the difficulties associated with an equal-time interaction, we limit ourselves to nonrelativistic quantum mechanics and a two-particle interaction, such as that corresponding to the Coulomb force between charged particles. We obtain a set of differential equations which are really not consistent, but they serve as a guide to a formulation in terms of integral equations that has the same perturbation expansion as the usual theory for the scattering of particles. The integral equation for two-particle amplitudes can be modified to give the correct theory for bound states, but this is not the case for more than two particles. We expect that this theory can be generalized to a formulation of relativistic quantum mechanics of interacting particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号