共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular dynamics simulations have been carried out to investigate nanostructural organization in mixtures of 1-octyl-3-methylimidazolium nitrate ionic liquid and water at multiple water concentrations. Evolution of the polar network, water network, and micelle structures is visualized and analyzed via partial radial distribution functions. The calculated static partial structure factors show that within the range of water contents examined, polar networks, water networks, and micelles possess an approximately invariant characteristic length at around 20 A. Furthermore, the above calculations point out that, as the amount of water increases, the polar network is continuously broken up (screened) by the intruding water, while the structural organization of the water network and the micelle exhibits a turnover. At the turnover point, the most ordered micelle (cation-cation) structure and water (water-anion-water) network are formed. Thereafter, the structural organization abates drastically, and only loose micelle structure exists due to the dominant water-water interactions. The simulated turnover of structural organization agrees with the sharpest peak in the experimentally obtained structure factor in aqueous solutions of similar ionic liquids; the simulated water structure reveals that water can form liquidlike associated aggregates due to the planar symmetry and strong basicity of NO(3)-, in agreement with experiment. The turnover of structural organization of micelles results from the persistent competition between the hydrophobic interactions of the nonpolar groups and the breakup of the charged polar network with increasing water content, whereas the turnover of the water network results from the competition between the water-water and water-anion interactions. 相似文献
2.
Structural and dynamical properties of liquid trimethylphosphine (TMP), (CH(3))(3)P, as a function of temperature is investigated by molecular dynamics (MD) simulations. The force field used in the MD simulations, which has been proposed from molecular mechanics and quantum chemistry calculations, is able to reproduce the experimental density of liquid TMP at room temperature. Equilibrium structure is investigated by the usual radial distribution function, g(r), and also in the reciprocal space by the static structure factor, S(k). On the basis of center of mass distances, liquid TMP behaves like a simple liquid of almost spherical particles, but orientational correlation due to dipole-dipole interactions is revealed at short-range distances. Single particle and collective dynamics are investigated by several time correlation functions. At high temperatures, diffusion and reorientation occur at the same time range as relaxation of the liquid structure. Decoupling of these dynamic properties starts below ca. 220 K, when rattling dynamics of a given TMP molecules due to the cage effect of neighbouring molecules becomes important. 相似文献
3.
液态水的分子动力学模拟 总被引:2,自引:0,他引:2
用分子动力学(MD)模拟方法在150~376K的温度范围内对液态水的微正则系统进行了研究。考察了液态水的结构及其性质。模拟采用了由从头算得出的柔性水-水相互作用势MCYL。对时间和空间的平均得出了液态中水分子几何构型及温度改变所引起的液态水结构变化。对径向分布函数gOH, gOO, gHH及配位数的分析表明, 在所考察的温度范围内, 每个水分子与相邻分子形成的氢键数为2~3, 水分子在参与的2个氢键中同时作为授受体。结合对振动谱的研究表明在低温时液态水形成的网络结构可能随温度的升高而形成小的簇结构。 相似文献
4.
Ribeiro MC 《The journal of physical chemistry. B》2006,110(17):8789-8797
A previously proposed model for molecular dynamics (MD) simulation of liquid sulfur dioxide, SO(2), has been reviewed. Thermodynamic, structural, and dynamical properties were calculated for a large range of thermodynamic states. Predicted (P,V,T) of simulated system agrees with an elaborated equation of state recently proposed for liquid SO(2). Calculated heat capacity, expansion coefficient, and isothermal compressibility are also in good agreement with experimental data. Calculated equilibrium structure agrees with X-ray and neutron scattering measurements on liquid SO(2). The model also predicts the same (SO(2))(2) dimer structure as previously determined by ab initio calculations. Detailed analysis of equilibrium structure of liquid SO(2) is provided, indicating that, despite the rather large dipole moment of the SO(2) molecule, the structure is mainly determined by the Lennard-Jones interactions. Both single-particle and collective dynamics are investigated. Temperature dependency of dynamical properties is given. The MD results are compared with previous findings obtained from the analysis of inelastic neutron scattering spectra of liquid SO(2), including wave-vector dependent structural relaxation, tau(k), and viscosity, eta(k). 相似文献
5.
A polarizable model for simulation of liquid methanol, compatible with the COS/G2 water model, has been developed using the Charge-on-Spring (COS) technique. The model consists of three point charges, with one polarizable center on the oxygen atom. The Lennard-Jones parameters on the oxygen atom together with the molecular polarizability were varied to reproduce the experimental heat of vaporization and density of liquid methanol at ambient conditions. We examined the energies of various methanol dimers in the gas phase and compared them with values obtained from ab initio calculations. The model was then used to study the thermodynamic, dynamic, structural, and dielectric properties of liquid methanol as well as of a methanol-water mixture. A microscopic picture of the structure of pure liquid methanol and of the methanol-water mixture is provided. Good agreement was found between the results from our model simulations and available experimental and ab initio calculation data. In particular, the experimental dielectric permittivity of 32 could be reproduced, which had been shown to be difficult when using nonpolarizable models. 相似文献
6.
7.
8.
Equilibrium NPT and NVT molecular dynamics simulations were performed on liquid benzene over an extended range of temperature (from 260 to 360 K) using the COMPASS force field. Densities and enthalpies of vaporization (from cohesive energy densities) were within 1% of experiment at all temperatures. tumbling and spinning rotational diffusion coefficients, D(perpendicular) and D(parallel), computed as a function of temperature, agreed qualitatively with the results of earlier reported experimental and computational investigations. Generally, it was found that D(parallel)/D(perpendicular) approximately 1.4-2.5 and the activation energy for tumbling was significantly greater than for spinning about the C6 axis [Ea(D(perpendicular)) = 8.1 kJ mol(-1) and Ea(D(parallel)) = 4.5 kJ mol(-1)]. Calculated translational diffusion coefficients were found to be in quantitative agreement with experimental values at all temperatures [deviations were less than the scatter between different reported measurements]. In addition, translational diffusion coefficients were computed in the molecule-fixed frame to yield values for Dxy (diffusion in the plane of the molecule) and Dz (diffusion perpendicular to the plane). It was found that the ratio Dxy/Dz approximately 2.0, and that the two coefficients have roughly equal activation energies. This represents the first atomistic molecular dynamics study of translational diffusion in the molecular frame. 相似文献
9.
Michele Marchesi 《Chemical physics letters》1983,97(2):224-230
A molecular dynamics simulation, lasting ≈25 ps, has been performed with 150 ST2 water molecules between two quasi-hard repulsive walls, at a temperature of 302 K. A number of static and dynamic properties have been computed as a function of the distance from the walls, showing that water near the walls is in general more “ordered” than in the bulk, and that this bulk water behaves like ordinarv liquid ST2 water. 相似文献
10.
Yu. D. Fomin 《Journal of computational chemistry》2013,34(30):2615-2624
It is well known that confining a liquid into a pore strongly alters the liquid behavior. Investigations of the effect of confinement are of great importance for many scientific and technological applications. Here, we present a study of the behavior of benzene confined in carbon slit pores. Two types of pores are considered–graphite and amorphous carbon ones. We show that the effect of different pore structure is of crucial importance for the benzene behavior. © 2013 Wiley Periodicals, Inc. 相似文献
11.
Mixtures of Trifluoroethanol (TFE) and water with different proportions are studied using molecular dynamics simulations. The radial and spatial distribution functions, as well as the size distribution of TFE clusters are obtained from the trajectories. The variation of radial and spatial distribution functions with composition show that the addition of TFE enhances the water structure, but the hydrogen bonds between TFE molecules are broken as TFE is diluted with water. The TFE‐rich solutions have stronger TFE–water hydrogen bonds. The clustering of TFE molecules in low concentration region is attributed to the hydrophobic interactions between CF3 groups. The distribution of cluster sizes in solution supports these conclusions. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
12.
J. Oberbrodhage H. Morgner O. Tapia H. O. G. Siegbahn 《International journal of quantum chemistry》1997,63(6):1123-1131
Molecular dynamics simulations of liquid formamide (HCONH2) were carried out using the GROMOS software. The formamide molecule is represented by all of its atoms with all internal degrees of freedom. In contrast to other simulations dealing with bulk properties, this study focuses on the interface liquid–vacuum for the first time. We show that the molecular plane is tilted out of the surface, exposing the HCO group to the vacuum. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63 : 1123–1131, 1997 相似文献
13.
D. K. Belashchenko 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2006,80(12):1968-1979
The homogeneous crystallization of liquid rubidium models containing 500, 998, and 1968 particles in the basic cube was studied by the molecular dynamics method. The liquid crystallized over the temperature range 70–182.5 K predominantly with the formation of a body centered cubic (BCC) structure. The mechanism of crystallization was different from that accepted in classic nucleation theory. Crystallization developed as an increase in the number of atoms with Voronoi polyhedra of the 0-6-0-8 and 0-4-4-6 types, the formation of bound groups (clusters) from these atoms, and growth of these groups as in the coagulation of an impurity from a supersaturated solution. At the initial stage, bound groups had a very loose structure and included a fairly large number of atoms with polyhedra of other types. The linear dimension of the largest group rapidly approached the basic cube size. The atoms with the 0-6-0-8 and 0-4-4-6 Voronoi polyhedra played a leading role in crystallization and activated the transition of bound group atoms with other coordination types into a BCC coordination. The probability of formation of a bound group of a given size was found to be independent of the volume of the liquid model. Cluster size fluctuations especially strong over the temperature range 180–185 K played an important role in the formation of 0608 clusters of a threshold (“critical”) size. 相似文献
14.
We studied the thermal diffusion behavior of mixtures of benzene and heptane isomers by reverse nonequilibrium molecular dynamics. For n-heptane/benzene mixtures, we investigated the concentration dependence of the Soret coefficient. The Soret coefficient for equimolar mixtures of the three heptane isomers 3-methylhexane, 2,3-dimethylpentane, and 2,4-dimethylpentane in benzene has been calculated. Compared to the experimental data, the simulation results show the same trend in dependence of the mole fraction and degree of branching. The negative Soret coefficient indicates the enrichment of alkanes in the warm side. In the case of the heptane isomers in benzene, we could study the influence of the difference in shape and size on the thermal diffusion behavior at constant mass. In the simulation as well as in the experiment, we found that the Soret coefficients become higher with increasing degree of branching. Such behavior cannot be explained only by mass and size effects. The effect of the molecular shape needs to be considered additionally. 相似文献
15.
Todorova T Seitsonen AP Hutter J Kuo IF Mundy CJ 《The journal of physical chemistry. B》2006,110(8):3685-3691
The structure, dynamical, and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first-principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta-functional, four gradient-corrected functionals, and the local density and Hartree-Fock approximations. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self-diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and understructured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller average numbers of hydrogen bonds than pure density functionals but similar hydrogen bond populations. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than those of the corresponding pure density functionals. 相似文献
16.
Molecular dynamics simulations of pure benzene and a poly(oxyethylene) chain in benzene are performed. The simulation of pure benzene is found to agree excellently with previous simulations despite using a different force field. A comparison is made between the results of simulations of the poly(oxyethylene) chain in benzene and in water and of stochastic simulations with respect to mean torsional angles, trans/gauche fractions, and transition rates. Characteristic deviations are found for the simulation in water and explained by specific atomic interactions, while there is satisfactory agreement with a stochastic simulation based upon the simple Langevin equation using a friction coefficient of 1 ps?1. The characteristic ratio of poly(oxyethylene) in benzene is calculated on the basis of the rotational isomeric state model. © 1992 by John Wiley & Sons, Inc. 相似文献
17.
The self- and mutual diffusion coefficients for binary mixtures of Ar-Kr both in the bulk and in the nanopores were studied by molecular dynamics simulations. The composition dependences and the relationships between the self- and the mutual diffusion coefficients both in the bulk and in the nanopores were further discussed. It was found that the simulation results (D(c.m.)) are close to the calculated ones (D(s)) for the Ar-Kr system. Both self- and mutual diffusion coefficients in nanopores are much lower than that of the bulk, and they ever decrease as the pore width decreases. Nevertheless, the self- and mutual diffusion coefficients increase as the mole fraction of Ar increases, and as expected, increase as the temperature increases. The self-diffusion coefficients of mixtures both in the bulk and in the nanopores are predicted by the Carman model and by the molecular cluster model. 相似文献
18.
V. P. Korolev Yu. A. Kasina N. L. Smirnova 《Russian Journal of General Chemistry》2007,77(10):1708-1714
The heats of solution of benzene, chlorobenzene, and aniline in mixtures of methanol or n-decane with 1-butanol or 1-decanol were measured by the calorimetric method at 25°C. The resulting data were supplemented with published data for the same solutes in a mixture of hexane with 1-butanol. The standard heats of solution of the investigated substances are described by common equations with a new independent variable: The relative fraction of hydroxy groups in the solution for the following pairs of mixtures with the same common component (alcohol): hexane-1-butanol + 1-butanol-methanol, decane-1-butanol + 1-butanol-methanol, and decane-1-decanol + 1-decanol-methanol. 相似文献
19.
The molecular dynamics and interactions of liquid methylene dichloride (CH2Cl2) have been computer simulated with atom—atom interaction potentials, with and without charges, at three EMLG pilot project state points, 293K 1 bar; 177K, 1 bar; and 323K, 5 k bar. A wide variety of static and dynamic results have been lodged in the EMLG data bank and in this paper we summarise the work to date and suggest areas of further investigation. 相似文献
20.
Atomistic molecular dynamics simulation of benzene as a solute in a columnar discotic liquid crystal
Cinacchi G 《The journal of physical chemistry. B》2005,109(16):8125-8131
A molecular dynamics simulation study on a binary liquid-crystalline mixture, where the solvent is the typical discogen hexakis-pentyloxy-triphenylene in its columnar state, while benzene is the solute, is reported. Both discotic and benzene molecules are modeled employing an atomistic force field. Attention has been paid to the structural and dynamic properties of benzene in this unusual environment, comparing these results with available experiments on the same or similar systems and with computer simulation data on neat liquid benzene. 相似文献