首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
王锦  肖勇 《应用声学》2014,22(10):3282-3284
在多传感器协同探测的应用背景下,提出将模糊聚类算法应用于多传感器网络的数据融合方向,解决异构多传感器网络由于各传感器探测信息粒度、时空不同而造成的航迹分裂和航迹冗余现象;通过仿真结果表明,该算法可以减少传统统计学方法错关联、漏关联的概率,对于复杂运动轨迹的机动目标(交叉航路目标)能够很好地进行多传感器测量数据的聚类,正确地进行测量数据的关联和融合,并进一步在通用航空监视管理系统的工程应用中加以验证;该算法在通用航空监管、物联网、协同探测信息系统方向均有广泛的应用空间。  相似文献   

2.
针对模糊C均值(FCM)聚类图像分割需要预先知道类别数及计算量较大的问题,提出了新的快速FCM改进方法。首先,利用边缘信息进行邻域搜索得到种子像素;通过区域生长快速获得区域分割类别数和对应的聚类中心值,并将图像分成确定类别的区域和未确定类别的区域;最后利用所得的聚类中心值和 FCM算法对未确定类别区域进行聚类。实验证明,本文提出的改进方法大大减少了计算量,显著提高了图像分割速度,而且由于聚类考虑了相邻像素点的关系,图像分割结果能够清晰地保留目标轮廓,提高了图像分割的质量。  相似文献   

3.
基于快速模糊C均值聚类算法的红外图像分割   总被引:1,自引:0,他引:1       下载免费PDF全文
 针对模糊C均值(FCM)聚类图像分割需要预先知道类别数及计算量较大的问题,提出了新的快速FCM改进方法。首先,利用边缘信息进行邻域搜索得到种子像素;通过区域生长快速获得区域分割类别数和对应的聚类中心值,并将图像分成确定类别的区域和未确定类别的区域;最后利用所得的聚类中心值和 FCM算法对未确定类别区域进行聚类。实验证明,本文提出的改进方法大大减少了计算量,显著提高了图像分割速度,而且由于聚类考虑了相邻像素点的关系,图像分割结果能够清晰地保留目标轮廓,提高了图像分割的质量。  相似文献   

4.
5.
李静静 《应用声学》2014,22(9):2879-2881,2885
针对现有爬壁机器人规划算法难以实现在线自适应高效规划的问题,设计了一种基于模糊K-Means算法和经典Sarsa(λ)算法自适应爬壁机器人规划算法;首先,对爬壁机器人的动力学模型进行了建模和分析,然后,对爬壁机器人规划中的状态进行自适应聚集从而实现值函数的近似,设计了K值可变的改进模糊K均值聚类算法对状态进行自适应地在线聚类,将聚类中心对应的值函数作为整个聚类所有数据对象的值函数的近似值,最后,对基于模糊K均值聚类算法和Sarsa(λ)算法的爬壁机器人在线规划算法进行了定义和描述,在MATLAB环境下对简单障碍物场景和复杂障碍物场景分别仿真实验,实验结果表明文中方法能有效地进行路径规划,随着情节数的增加,规划结果逐渐收敛到最优值,同时在环境变化时,收敛效果不受影响,具有较好的稳定性,是一种高效地实现爬壁机器人在线规划的方法。  相似文献   

6.
模糊非相关鉴别C均值聚类的茶叶傅里叶红外光谱分类   总被引:1,自引:0,他引:1  
茶是一种让人喜爱的健康饮品,不同品种的茶叶其功效和作用是不相同的。研究出一种可靠、简单易行、分类速度快的茶叶品种鉴别方法具有重要的意义。在模糊非相关判别转换(FUDT)算法和模糊C均值聚类(FCM)算法的基础上提出了一种模糊非相关鉴别C均值聚类(FUDCM)算法。FUDCM可以在聚类过程中动态提取光谱数据的模糊非相关鉴别信息。用FTIR-7600型傅里叶红外光谱分析仪分别采集优质乐山竹叶青、劣质乐山竹叶青和峨眉山毛峰三种茶叶的傅里叶中红外光谱,波数范围为4 001.569~401.121 1 cm-1。先用多元散射校正(MSC)进行光谱预处理,然后用主成分分析法(PCA)将光谱数据降维到20维,再利用线性判别分析(LDA)提取光谱数据中的鉴别信息。最后分别运行FCM和FUDCM进行茶叶品种鉴别。实验结果表明:当权重指数m=2时,FCM的聚类准确率为63.64%,FUDCM的聚类准确率为83.33%;FCM经过67次迭代计算实现了收敛,而FUDCM仅需17次迭代计算就可以实现收敛。用傅里叶红外光谱技术结合主成分分析、线性判别分析和FUDCM的方法能快速、有效地实现茶叶品种的鉴别分析,且鉴别准确率比FCM更高。  相似文献   

7.
赵晓君  郑倩 《应用声学》2015,23(8):2762-2765
为了克服以往故障诊断算法所具有的难以诊断效率低、诊断精度不高和模型通用性不强的缺点,提出了一种基于PCA主元分析特征优化和KNN聚类的故障诊断法算法;首先,给出了故障诊断的总体模型和诊断原理,然后在故障征兆原始样本数据的基础上,通过PCA主元分析法进行特征优化,获得维数约简的样本数据,从而提高故障诊断的效率;在此基础上,采用训练样本数据对模糊K均值分类器进行训练,并计算每个聚类的距离和阈值;最后,将在线获取的测试样本数据或离线样本数据输入到模糊K均值分类器,获得其所属分类,并采用KNN最近邻算法来获取其K个近邻,根据其与近邻的距离平方和与所属聚类距离平方阈值来判断其是否为故障样本,从而实现故障诊断;以滚动轴承故障诊断试验和模拟电路故障诊断试验为例,实验结果证明了文中方法较其它方法具有诊断效率高和诊断精度高的优点,是一种通用的和可行的在线故障诊断方法。  相似文献   

8.
借鉴生物先天性免疫与适应性免疫的协调作用机制,综合考虑中波红外图像的光谱成像机理和频域模板统计特征,提出一种免疫模板聚类目标提取算法。借鉴先天性免疫对抗原表面分子模式的识别作用,以最大类间方差,将模糊中波红外图像初分割为目标像素集、背景像素集和模糊像素集;借鉴先天性免疫的特征提呈作用,提取中波红外图像模糊像素的频域模板特征,将图像的像素灰度特征空间映射为频域模板特征空间;基于提呈得到的模板特征,对模糊像素集进行适应性免疫聚类,将模糊像素划分为目标像素或背景像素。用手部痕迹的模糊中波红外图像进行实验,并与经典边缘检测模板法和传统区域模板法进行了效果比较和定量评价,结果表明免疫模板聚类算法的目标提取率、与参考标准的重合度、绝对误差率均优于现有模板方法,能够有效实现模糊中波红外图像的目标提取。  相似文献   

9.
为了解决Mapreduce机制下算法通信时间占用比过高实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通讯管理方法,采用成员管理协议方式实现成员管理与Mapreduce降低操作的同步化。其次,实行典型个体组降低操作代替全局个体降低操作,并定义二阶段缓冲算法,通过第一阶段的缓冲进一步降低第二阶段Mapreduce操作的数据量,尽可能降低大数据带来的对算法负面影响。最后,利用人造大数据测试集进行仿真实验表明此算法既能保证聚类精度要求又可有效加快算法运行效率。  相似文献   

10.
刘福才  张彦柳  陈超 《物理学报》2008,57(5):2784-2790
采用一种基于鲁棒模糊聚类算法的模糊辨识方法,通过引入局部划分关联度因子,增强了系统辨识的抗干扰能力,提高了系统辨识的鲁棒性.首先用最近邻模糊聚类法划分初始输入空间,得到模糊规则数及初始聚类中心;然后用鲁棒模糊聚类算法求解并优化模糊隶属度和聚类中心,建立高精度的T-S模糊模型;最后利用最小二乘法辨识模型的初始结论参数,进一步利用带遗忘因子的递推最小二乘法优化结论参数.采用该方法对Mackey-Glass混沌时间序列进行建模和预测,仿真结果表明利用本方法可以进行准确建模和预测,验证了本方法的鲁棒性、有效性和实 关键词: 最近邻模糊聚类 鲁棒模糊聚类 混沌时间序列 最小二乘法  相似文献   

11.
相邻帧间匹配的迎头点目标跟踪算法   总被引:1,自引:0,他引:1  
针对海空复杂背景下迎头点目标检测与跟踪难题,提出了一种基于相邻帧间匹配的边检测边跟踪算法.算法对相邻红外图像序列帧间点与点的邻域匹配,标记匹配结果兴趣区域像素点,统计标记次数,与输入单帧图像同步显示迎头目标检测结果.算法主要特点在于无需提前假定疑似目标点位置,单个匹配过程与当前相邻两帧外的其它序列帧无关,整个匹配过程不随目标数目多少或运动状态变化而改变.根据仿真和实拍照片实验,证实了理论上区别于传统算法的上述优点,在军事应用中具有较高的参考价值.  相似文献   

12.
王瑞  白晓涛  魏青  吕明 《应用声学》2015,23(1):153-156
针对无人机跟踪目标的航迹规划问题,本文提出了一种双评估函数的改进A*算法。首先,根据无人机在跟踪目标时的飞行特点提出了航迹规划策略,并结合无人机的油耗、航迹长短和机动性能等约束条件来设计中间目标点的评估函数和航迹片段的评估函数。之后,采用加权法对A*算法进行改进,以使航迹的优化与时间耗费之间找到平衡点。同时,改进在Open表中插入与删除节点的方式,提高计算效率。最后,通过对跟踪航迹的仿真,表明该算法可以快速、有效地为无人机在跟踪目标时规划出优化的航迹。  相似文献   

13.
提出了一种基于模糊技术的非线性系统中多传感器目标跟踪融合算法.在基于卡尔曼滤波器的分布式融合算法中,利用模糊技术中的决策距离思想,对实时跟踪目标的多传感器进行动态分组,以获得在非线性系统中目标跟踪的最佳融合数据精度.仿真结果证明,该算法是一种有效的分布式融合算法.  相似文献   

14.
复杂海空背景下红外小目标检测和跟踪算法决定了光电跟踪设备的探测性能。为了解决复杂海空背景下的红外小目标检测跟踪难题,提出了一种复杂海空背景下的红外小目标抗干扰检测跟踪算法。在检测阶段,为了抑制不同区域中各类杂波,该算法利用不同的分类器分别区分不同区域的杂波和小目标;在跟踪阶段,为了进一步剔除孤立噪声和杂波干扰,采用高斯混合概率假设密度滤波器进行目标航迹维持。在仿真视频上进行的目标检测跟踪实验表明,所提算法相比以往的跟踪算法,正确跟踪率提升了约10%,平均跟踪精度提升了约50%。该算法具有较好的工程可行性。  相似文献   

15.
电子稳像的特征点跟踪算法   总被引:8,自引:4,他引:8  
朱娟娟  郭宝龙 《光学学报》2006,26(4):16-521
提出一种利用特征跟踪进行电子稳像的算法,该算法具有计算量小,精度高,有鲁棒性等优点。算法由两部分构成:(1)基于特征点集二维运动模型进行全局运动估计。提取图像的特征点,以其为中心建立特征窗进行块匹配,得到匹配特征点集,根据特征点集内具有稳定相对位置的结构特征,提出距离不变准则,对特征匹配进行验证,以保证各点的局部运动具有良好的全局一致性,从而形成特征点集的全局运动矢量;(2)利用自适应均值滤波去除摄像机抖动。均值滤波器可以有效平滑摄像机的高频抖动,同时滤波器尺寸自适应地根据抖动频率来调整大小,能够防止过稳或欠稳。实验结果表明,该算法能够有效减轻摄像机的旋转和平移抖动。  相似文献   

16.
水下运动目标实时检测算法研究   总被引:1,自引:0,他引:1  
针对水下复杂环境情况,提出了一种快速实时检测水下运动目标的算法.在分析水下图像特性的基础上,对图像序列进行帧间差值运算得到差分图像,选择合适的阈值,对差分图像进行二值化和图像分割算法.结合差分图像中目标是由于待检测目标运动形成的特点,提出了衡量二值目标形状的线度指标的定义,可以描述目标的形状,从而实现快速实时检测水下运动目标.  相似文献   

17.
针对水下对空成像图像的低对比度增强问题,在对两种直方图均衡化技术详细分析的基础上,提出了一种改进的直方图均衡化的快速算法.该算法将图像划分为不同子区域,计算子区域的均衡化函数,然后设置移动子块的大小和移动步长,最后采用插值方法实现图像的平滑处理.该算法在较好地突出图像细节信息、消除块状效应的同时,避免了复杂的数学运算,取得了较好的效果.  相似文献   

18.
苏兵  张钰婧 《应用声学》2016,24(2):325-329
在无线传感器网络中,分簇技术是一种有效延长网络生命周期的方法。但是这种多跳的网络模型,如果节点均匀分布并且簇的大小相等,则靠近基站的簇头由于要中继更多的数据,则会导致能量空洞现象。因此提出一种非均匀分簇方法来缓解能量空洞问题。首先,通过节点的剩余能量、到基站的距离以及邻居节点数量来选择簇头。簇一旦形成之后,通过单跳和多跳的混合机制将数据发送到基站。实验结果表明,此协议能有效的延长网络的生命周期,均衡网络能耗,有效延缓能量空洞的形成速度。  相似文献   

19.
红外图像掠海小目标的检测算法研究   总被引:2,自引:0,他引:2  
针对红外图像掠海小目标信噪比低,且易受到水天线和背景杂波干扰的特点,提出了一种红外掠海小目标的提取与检测算法。该方法的特点是:首先采用中值滤波来减小噪声,并提出了差方和算法,用以抑制背景噪声并对目标增强;再采用了图像行扫描法有效地滤除水天线;最后通过弱化背景边缘和阈值分割等综合算法得到候选小目标。仿真结果表明,该算法达到了较好的效果。  相似文献   

20.
Two well-known drawbacks in fuzzy clustering are the requirement of assigning in advance the number of clusters and random initialization of cluster centers. The quality of the final fuzzy clusters depends heavily on the initial choice of the number of clusters and the initialization of the clusters, then, it is necessary to apply a validity index to measure the compactness and the separability of the final clusters and run the clustering algorithm several times. We propose a new fuzzy C-means algorithm in which a validity index based on the concepts of maximum fuzzy energy and minimum fuzzy entropy is applied to initialize the cluster centers and to find the optimal number of clusters and initial cluster centers in order to obtain a good clustering quality, without increasing time consumption. We test our algorithm on UCI (University of California at Irvine) machine learning classification datasets comparing the results with the ones obtained by using well-known validity indices and variations of fuzzy C-means by using optimization algorithms in the initialization phase. The comparison results show that our algorithm represents an optimal trade-off between the quality of clustering and the time consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号