首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2,2′-Bis[(4,7-dimethyl-inden-1-yl)methyl]-1,1′-binaphthyl and [2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides have been synthesized from 2,2′-bis(bromomethyl)-1,1′-binaphthylene. 2,2′-Bis(bromomethyl)-1,1′-binaphthylene was alkylated with the lithium salt of 4,7-dimethylindene to yield 2,2′-bis[1-(4,7-dimethyl-indenylmethyl)]-1,1′-binaphthylene (S)-(−)-9. The lithium salt of 9 was metalated with either titanium trichloride followed by oxidation or zirconium tetrachloride to give titanocene dichloride (S)-(+)-10 and zirconocene dichloride 11. The known complexes ansa-[2,2′-bis[(1-indenyl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides were formed and hydrogenated to ansa-[2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides 12 and 14 or to ansa-[2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl]titanium dichloride 13 whose solid state structure was determined by X-ray crystallography. Complex 13 adopts a C1-symmetrical conformation in the solid state, but is conformationally mobile in solution, exhibiting C2-symmetry in its room temperature NMR spectra.  相似文献   

2.
Three spiro[pyrrolidine-2,3′-oxindoles], 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-phenyl-spiro[3H-indole-3,3′-[3H]-pyrrolizine]-2′-carboxylic acid methyl ester (1), 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-nitro-2′-phenyl-spiro[3H-indole-3, 3′-[3H]-pyrrolizine] (2) and 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-nitro-2′-(4″-chlorophenyl)-spiro[3H-indole-3,3′-[3H]-pyrrolizine] (3) have been synthesized and their 1H, 13C and 15N spectra assigned. The chemical shift assignments are based on Pulsed Field Gradient (PFG) Double Quantum Filter (DQF) 1H, 1H correlation spectroscopy (COSY), PFG 1H, 13C Heteronuclear Multiple Quantum Coherence (HMQC) and PFG 1H,X (X = 13C and 15N) Heteronuclear Multiple Bond Correlation (HMBC) experiments. The single crystal X-ray structures of 1–3 have been determined. Compounds 1 and 2 crystallized in monoclinic space group C2/c and compound 3 in monoclinic space group P21/c, respectively. Also the ESI-TOF MS data of 1–3 are given.  相似文献   

3.
Racemic 1,1′-methylene[(1RS,1′RS,3RS,3′RS,5RS,5′RS)-8-oxabicyclo[3.2.1]oct-6-en-3-ol] ((±)-6) derived from 2,2′-methylenedifuran has been resolved kinetically with Candida cyclindracea lipase-catalysed transesterification giving 1,1′-methylenedi[(1R,1′R,3R,3′R,5R,5′R)-8-oxabicyclo[3.2.1]oct-6-en-3-ol] (−)-6 (30% yield, 98% ee) and 1,1′-methylenedi[(1S,1′S,3S,3′S,5S,5′S)-8-oxabicyclo[3.2.1]oct-6-en-3-yl] diacetate (+)-8, (40% yield, 98% ee). These compounds have been converted into 1,1′-methylenedi[(4S,4′S,6S,6′S)- and (4R,4′R,6R,6′R)-cyclohept-1-en-4,6-diyl] derivatives.  相似文献   

4.
A new chiral ferrocenylphosphine ligand, 2,2′-bis[1-N,N-dimethylamino)ethyl]-1,1′-bis(diphenylphosphino)ferrocene (2), which has C2 symmetry and a functional group on the side chain, was prepared by ortho-lithiation and phosphination of 1,1′-bis[1-N,N-dimethylamino)ethyl]ferrocene followed by optical resolution; recrystallization of the diammonium salt with tartaric acid. An X-ray diffraction study of PdCl2[(+)-2] showed that the complex has square-planar geometry with two cis chlorine and two phosphorus atoms and ligand (+)-2 has an (S) configuration on the 1-dimethylaminoethyl side chain and (R) ferrocene planar chirality.  相似文献   

5.
Solid complexes of lanthanide picrates with N-Ethyl-2-{2′-[(ethyl-phenyl-carbamoyl)-methoxy]-[1,1′]binaphthalenyl-2-yloxy}-N-phenyl-acetamide (L), [Ln(pic)3L] (Ln=La, Tb, Y), have been prepared and characterized by elemental analysis, IR and 1H NMR spectra. The molecular structure of [Tb(pic)3L] shows that the Tb(III) ion is nine-coordinated by four oxygen atoms from the L and five from two bidentate and one unidentate picrates. The complex forms a 1D supramolecular structure along z-axis.  相似文献   

6.
Molecular structures of (triphenylphosphine) [1,1′-bis-(methylthio)ferrocene-S,S′,Fe]Pt(BF4)2 (1), (1,5,9-trithia[9]ferrocenophane-S,S′,S″,Fe)Pd(BF4)2 (2), and (acetonitrile)(1,4,7-trithia[7]ferrocenophane-S,S′,S″,Fe)Pd(BF4)2 (3) were determined by X-ray analyses. The Pt in 1 and the Pd atom in 2 have a somewhat distorted square-planar geometry including the Fe atom of the ferrocene moiety, while the Pd atom in 3 is coordinated by one equivalent of acetonitrile and takes a distorted tetragonal-pyramidal geometry. The distances of the Fe---M bond (M = Pd, Pt) in 1–3 are 2.851(2), 2.827(2), and 3.0962(8) Å, respectively. Cyclic voltammetry of 1–3 gave no reversible wave, but afforded some information supporting the presence of a dative bond.  相似文献   

7.
By use of the three-layer diffusion method, reactions of flexible bipyridyl ligands (4,4′-bpp or 3,3′-bpp) with M(II) salts (M = Zn, Cd) and multi-carboxylate ligands resulted in the formation of four interesting d10 metal–organic coordination polymers: [Zn(μ-4,4′-bpp)Br2]n (1), [Zn(μ-4,4′-bpp)(1,2-bdc)]n · nH2O (2), [Zn(μ-3,3′-bpp)(1,3-bdc)]n · nCH3OH · 2nH2O (3) and [Cd(μ-3,3′-bpp)(C4H2O4)]n · 3nH2O (4) (4,4′-bpp = 2,2′-bis(4-pyridylmethyleneoxy)-1,1′-biphenylene; 3,3′-bpp = 2,2 ′-bis(3-pyridylmethyleneoxy)-1,1′-biphenylene; bdc=benzenedicarboxylate, C4H4O4 = fumaric acid). Complex 1 has a 2D sheet structure consisting of two unusual zigzag Zn(II) chains which are nearly perpendicular to each other. Complex 2 is comprised of two-leg ladders, in which [Zn(4,4′-bpp)] chains serve as the side rails and 1,2-bdc ligands serve as the cross rungs. In complex 3, every two 1,3-bdc ligands connect the neighbouring Zn(II)-3,3′-bpp dimetallic rings in η1 coordination modes into an interesting chain structure. Complex 4 consists of an anionic macrocycle-containing cadmium dicarboxylate sheets that are separated by 3,3′-bpp. These d10 metal complexes exhibit high thermal stabilities and strong luminescence efficiencies.  相似文献   

8.
1,1′-Methylene-3,3′-dialkyldiimidazolium salts have been deprotonated with n-butylithium in the presence of palladium(II) iodide to give the percarbene complexes 1 (alkyl=Me) and 2 (alkyl=Et), each containing two bidentate 1,1′-methylene-3,3′-dialkyldiimidazolin-2,2′-diylidene chelate ligands. The X-ray structure analysis of 1 reveals a stereochemistry in which the two spiro-linked six-membered metallacycles adopt boat-like conformations strongly bending out of the PdC4 coordination plane in opposite directions. The carbenoid imidazole rings, which are rotated by +42 and −43°, respectively, relative to this plane, break down into two tightly bound π-systems (N=4C=4N,= C=C) connected by long C---N bonds.  相似文献   

9.
The synthesis of tetrakis[4,4′,6,6′-tetrasubstituted-1,1′-bi-2-naphtholphosphate]dirhodium(II) complexes, and their use as catalysts in the enantioselective tandem carbonyl ylide formation–intramolecular 1,3-dipolar cycloaddition of an unsaturated 2-diazo-3,6-diketoester, generating cycloadduct in up to 86% ee, is described.  相似文献   

10.
The “naked sugar” (+)-(1R,2R,4R)-2-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate ((+)-3) was converted in ten synthetic steps into the new C-nucleoside (1R)-1-C-(6′-amino-7′H-purin-8′-yl)-1,4-anhydro-3-azido-2,3-dideoxy- D-erythro-pentitol ((+)-2) in 19% overall yield.  相似文献   

11.
The crystal and molecular structures of 2′-amino-6′-dibutylamino-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (1), 2′-amino-6′-(N-cyclohexyl-N-methylamino)-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (2) and 2′-(2-chlorophenyl)amino-6′-dibutylaminospiro[isobenzofuran-1(3H), 9′[9H]xanthen-3-one (3) have been determined by single-crystal X-ray diffraction analysis. Atom-atom non-bonded potential energy and semiempirical quantum chemical calculations have been performed. The xanthene rings of 1 to 3 are slightly bent and the phthalide rings are planar. The phthalide ring moieties are almost perpendicular (88.9(1)–93.5(5)°) to the xanthene rings. The bond lengths C(6)---O(2) are apparently extended from the normal C(sp3---O (lactone) length. The temperature factors for one butyl group C(32)---C(35)) of 1 increase gradually toward the terminal carbon. The temperature factors for C(30)---C(33) of 2 indicate large vibrations and these are reflected in short bond lengths. Two butyl groups of 3 are disordered and these C---C bond lengths are short and long alternately. Atomic net charges around spirocarbon C(6) and toward N(1) to C(6) indicate the weak alternative system in the colorless form. As the xanthene ring has a planar geometry, the π electron density migration will easily occur from the auxochromes attached to the phthalide ring to the xanthene ring.  相似文献   

12.
The crystal and molecular structures of 2′-amino-6′-dibutylamino-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (1), 2′-amino-6′-(N-cyclohexyl-N-methylamino)-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (2) and 2′-(2-chlorophenyl)amino-6′-dibutylaminospiro[isobenzofuran-1(3H), 9′[9H]xanthen-3-one (3) have been determined by single-crystal X-ray diffraction analysis. Atom-atom non-bonded potential energy and semiempirical quantum chemical calculations have been performed. The xanthene rings of 1 to 3 are slightly bent and the phthalide rings are planar. The phthalide ring moieties are almost perpendicular (88.9(1)−93.5(5)°) to the xanthene rings. The bond lengths C(6)---O(2) are apparently extended from the normal C(sp3)---O (lactone) length. The temperature factors for one butyl group C(32)---C(35)) of 1 increase gradually toward the terminal carbon. The temperature factors for C(30)---C(33) of 2 indicate large vibrations and these are reflected in short bond lengths. Two butyl groups of 3 are disordered and these C---C bond lengths are short and long alternately. Atomic net charges around spirocarbon C(6) and toward N(1) to C(6) indicate the weak alternative system in the colorless form. As the xanthene ring has a planar geometry, the π electron density migration will easily occur from the auxochromes attached to the phthalide ring to the xanthene ring.  相似文献   

13.
Enantiopure 1,1′-binaphthyl-2,2′-dicarboxylic acids (R)-1 and (S)-1 have been synthesized through the lipase-catalyzed kinetic resolution of the racemic 2,2-bis(hydroxymethyl)-1,1′-binaphthyl (±)-2 and subsequent oxidation of the hydroxymethyl groups.  相似文献   

14.
The magnetic susceptibility of 1,1′,2,2′-tetramethylcobaltocene, Co[C5H3(CH3)2]2, and 1,1′-diethylcobaltocene, Co(C5H4C2H5)2, has been studied between 0.99 and 296 K. The data are well reproduced by a calculation of the dynamic Jahn-Teller effect for the 2E1g(a1g2e2g4e1g) ground state of D5d symmetry. A suitable set of parameter values is given by ζ = 100 cm−1, δ = 150 cm−1, kJT = 0.40, κ = 0.70. The magnetism of cobaltocene, Co(C5H5)2, may be described by parameter values of comparable magnitude. The results imply a significantly larger reduction of the spin-orbit coupling parameter ζ due to covalency than of the orbital reduction factor κ.  相似文献   

15.
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = S(CH2)4S, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.  相似文献   

16.
Hydrosilylation of styrenes bearing β-substituents with trichlorosilane was catalyzed by a palladium complex (0.1 mol %) coordinated with (R)- 2-methoxy-2′-diphenylphosphino-1,1′-binaphthyl ((R)-MeO-MOP) to give high yields of optically active 1-aryl-1-silylalkanes (80–85% ee) as single regioisomers. The resulting silanes were readily converted into the corresponding optically active alcohols (80–99% yield).  相似文献   

17.
The photolysis of 2,2′-dinitrodiphenylmethylbenzoates (1a–1d) in 2-propanol gives dibenzo-[c, f]-[1,2]diazepin-11-one-oxides (5a–5d) as the major product. Dibenzo[c, f]-[1,2]diazepin-11-ones (2a–2d), 2,2′-dinitrobenzophenones (3a–3d), 2-amino-2′-nitrobenzophenones (4a–4d) and N-hydroxyacridones (6a–6d) are also formed in the reaction. When the irradiation is carried out in benzene, 3-(2′-nitrophenyl)-2,1-benzisoxazoles (7a–7d) are also obtained together with the above products.  相似文献   

18.
Russian Journal of General Chemistry - The reaction of 3a,6a-diaza-1,4-diphosphapentalene with 1-bromo-2-phenylacetylene has led to the formation of 1,1-bis(phenylethynyl)- and...  相似文献   

19.
Refractometric, dielectric and electro-optical absorption measurements are reported for 1-dimethylamino-2,6-dicyano-4-methyl-benzene (I) and 1,4-bis(4′-dimethylamino-3′,5′-dicyanophenyl)bicyclo[2.2.2]octane (II). The evaluation leads to dipole moments and polarizabilities of the ground state as well as the first dipole allowed singlet state. The experimental res excellently substantiate the method of electro-optical absorption measurements in solution. It is shown that the excited dimer wavefunctions of the bichromophoric molecule II localize by solvent induced local site perturbations.  相似文献   

20.
Oxidation of primary and secondary alcohols has been studied in the presence of [Fe(ind)Cl]2O (1) and [Fe2(OMe)2(PAP)Cl4] (2) (indH = 1,3-bis(2′-pyridylimino)isoindoline; PAP = 1,4-di(2′-pyridyl)aminophthalazine) as catalysts using hydrogen peroxide as primary oxidant. The complexes were found to be suitable catalysts for the oxidation of alcohols to the corresponding carbonyl compounds in acetone as solvent. The reactivity of the alcohols is in the order primary < secondary < cyclic secondary < aromatic. The reaction mechanism in the case of 1 probable involves an iron-based oxidant, while in the case of 2 a free-radical mechanism is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号