首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in-depth study of the cobalt-catalyzed [2+2+2] cycloaddition between yne-ynamides and nitriles to afford aminopyridines has been carried out. About 30 nitriles exhibiting a broad range of steric demand and electronic properties have been evaluated, some of which open new perspectives in metal-catalyzed arene formation. In particular, the use of [CpCo(CO)(dmfu)] (dmfu=dimethyl fumarate) as a precatalyst made possible the incorporation of electron-deficient nitriles into the pyridine core. Modification of the substitution pattern at the yne-ynamide allows the regioselectivity to be switched toward 3- or 4-aminopyridines. Application of this synthetic methodology to the construction of the aminopyridone framework using a yne-ynamide and an isocyanate was also briefly examined. DFT computations suggest that 3-aminopyridines are formed by formal [4+2] cycloaddition between the nitrile and the intermediate cobaltacyclopentadiene, whereas 4-aminopyridines arise from an insertion pathway.  相似文献   

2.
Metal carbenes have proven to be one of the most important and useful intermediates in organic synthesis, but catalytic asymmetric reactions involving metal carbenes are still scarce and remain a challenge. Particularly, the mechanistic pathway and chiral induction model in these asymmetric transformations are far from clear. Described herein is a copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization, which constitutes the first asymmetric vinylic C(sp2)–H functionalization through cyclopentannulation. Significantly, based on extensive mechanistic studies including control experiments and theoretical calculations, a revised mechanism involving a novel type of endocyclic copper carbene via remote-stereocontrol is proposed, thus providing new mechanistic insight into the copper-catalyzed asymmetric diyne cyclization and representing a new chiral control pattern in asymmetric catalysis based on remote-stereocontrol and vinyl cations. This method enables the practical and atom-economical construction of an array of valuable chiral polycyclic-pyrroles in high yields and enantioselectivities.

A copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization is reported, enabling the construction of various valuable chiral polycyclic-pyrroles in high yields and enantioselectivities.  相似文献   

3.
A mild and general route for preparing 2-pyrones from CO2 and diynes is described. Under only 1 atm of CO2, excellent yields of pyrone are obtained using catalytic amounts of Ni(COD)2 and imidazolylidene ligand, IPr. In addition, stoichiometric reactions between the isolated complex Ni(IPr)2, diynes, and CO2 suggest that the pathway involves initial reaction with CO2 as the key step.  相似文献   

4.
Asao N  Sato K 《Organic letters》2006,8(23):5361-5363
[Structure: see text] The AuCl-catalyzed benzannulation of o-alkynyl(oxo)benzenes with benzenediazonium 2-carboxylate proceeds under mild conditions and a variety of anthracene derivatives, having a ketone group at the 9-position, are produced in good to high yields. The reaction proceeds most probably through the [4+2] cycloaddition between benzyne and benzopyrylium auric ate complex, which would be generated by the gold-induced electrophilic cyclization of o-alkynyl(oxo)benzenes.  相似文献   

5.
The synthesis and anion binding properties of a new class of calixpyrrole analogue, containing two carbazole subunits in lieu of two of the four acetone bridging elements normally found in calix[4]pyrrole, is described. The compound exists in a winglike structure in the solid state, as judged from single-crystal X-ray diffraction analyses of both the free system and the corresponding benzoate anion complex. Evidence for anion binding in dichloromethane solution was obtained from static fluorescent quenching experiments; these latter revealed a slight preference for acetate relative to other carboxylate anions (e.g., benzoate, oxalate, succinate), as well as various other anionic substrates (i.e., chloride and dihydrogen phosphate). No evidence of binding was observed in the case of bromide, nitrate, and hydrogen sulfate.  相似文献   

6.
o-Carboryne (1,2-dehydro-o-carborane) is a very useful synthon for the synthesis of a variety of carborane-functionalized molecules. With 1-Li-2-OTf-o-C2B10H10 as the precursor, o-carboryne undergoes an efficient [4 + 2] cycloaddition with various conjugated enynes, followed by a subsequent [2 + 2] cycloaddition at room temperature, generating a series of carborane-fused tricyclo[6.4.0.02,7]dodeca-2,12-dienes in moderate to high isolated yields. This reaction is compatible with many functional groups and has a broad substrate scope. A reactive carborane-fused 1,2-cyclohexadiene intermediate is involved, which is supported by experimental results and DFT calculations. This protocol offers a convenient strategy for the construction of complex carborane-functionalized tricyclics.

An unprecedented tandem [4 + 2]/[2 + 2] cycloaddition of o-carboryne with enynes has been disclosed for the efficient synthesis of various carborane-fused tricyclics, in which a reactive carborane-fused 1,2-cyclohexadiene intermediate is involved.  相似文献   

7.
The CuX2-mediated reaction of enynal units, including ortho-alkynylbenzaldehydes, with alkynes gives a variety of haloaromatic compounds stereoselectively in good to high yields. 2,2′-Binaphthyl skeletons are also readily prepared by the reaction of ortho-alkynylbenzaldehydes and diynes. The method was applied to the synthesis of poly-substituted tetracene derivatives.  相似文献   

8.
The reaction of enynals 1, including o-alkynylbenzaldehydes, and carbonyl compounds 2 in the presence of a catalytic amount of AuBr3 in 1,4-dioxane at 100 degrees C gave the functionalized aromatic compounds 3 in high yields. The AuBr3-catalyzed formal [4 + 2] benzannulation proceeds most probably through the coordination of the triple bond of 1 to AuBr3, the formation of a pyrylium auric ate complex via the nucleophilic addition of the carbonyl oxygen atom, the reverse electron demand-type Diels-Alder addition of the enols, derived from 2, to the auric ate complex, and subsequent dehydration and bond rearrangement. Similarly, the AuBr3-catalyzed reactions of 1 with acetal compounds afforded the corresponding aromatic compounds in good yields.  相似文献   

9.
A new nickel-catalyzed procedure for the [4+2+1] cycloaddition of (trimethylsilyl)diazomethane with alkynes tethered to dienes has been developed. A broad range of unsaturated substrates participate in the sequence, and stereoselectivities are generally excellent. Stereochemical studies provided evidence for a mechanism that involves the [3,3] sigmatropic rearrangement of divinylcyclopropanes.  相似文献   

10.
A new approach for the synthesis of 2-vinylindole derivatives by 5-exo mode cyclization of 2-(3-silyloxymethylallenyl)anilines was developed. The starting allenylanilines were easily prepared by the Stille coupling of o-iodoaniline and allenylstannanes. The formed 2-vinylindole derivatives were transformed into several carbazole derivatives via the [4+2] cycloaddition reaction with suitable dienophiles.  相似文献   

11.
This article describes the design and optimization of a catalytic enantioselective three-component hetero-[4+2] cycloaddition/allylboration reaction between 3-boronoacrolein, enol ethers, and aldehydes to afford alpha-hydroxyalkyl dihydropyrans. The key substrate, 3-boronoacrolein pinacolate (2) was found to be an exceptionally reactive heterodiene in the hetero-[4+2] cycloaddition catalyzed by Jacobsen's chiral Cr(III) catalyst 1. The scope and limitations of this process were thoroughly examined. The adduct of 3-boronoacrolein pinacolate and ethyl vinyl ether was obtained in high yield and with over 95 % enantioselectivity. This cyclic alpha-chiral allylboronate adds to a very wide variety of aldehyde substrates, including unsaturated aldehydes and alpha-chiral aldehydes to give diastereomerically pure products. Acyclic 2-substituted enol ethers can be employed, in which case the catalyst promotes a kinetically selective reaction that favors Z enol ethers over the E isomers. Surprisingly, 3-boronoacrolein pinacolate was found to be a superior heterodiene than ethyl (E)-4-oxobutenoate, and a mechanistic interpretation based on a possible [5+2] transition state is proposed.  相似文献   

12.
The [4+2] benzannulation reaction of internal or terminal alkynes with 2-biaryl, 2-heteroarylphenyl, or 2-alkenylphenyl Grignard reagents in the presence of Fe(acac)(3), 4,4'-di-tert-butyl-2,2'-bipyridyl, and 1,2-dichloro-2-methylpropane takes place at room temperature in 1 h to give 9-substituted or 9,10-disubstituted phenanthrenes and congeners in moderate to excellent yields. The reaction tolerates sensitive functional groups such as bromide and olefin. When applied to a 1,3-diyne, the annulation reaction takes place on both acetylenic moieties to give a bisphenanthrene derivative.  相似文献   

13.
Benzynes generated by the reaction of o-(trimethylsilyl)aryl triflates with TBAT participate in intramolecular [4 + 2] cycloadditions with conjugated enynes, arenynes, and dienes to furnish highly condensed polycyclic aromatic compounds. [reaction: see text]  相似文献   

14.
The gold-catalyzed intramolecular oxygen-transfer reactions of 2-alkynyl-1,5-diketones or 2-alkynyl-5-ketoesters-obtained from tetra-n-butylammonium fluoride mediated Michael addition of activated allenes to electron-deficient olefins-furnished cyclopentenyl ketones under very mild conditions. These reactions proceeded much easier and faster than similar reactions reported in literature, and the corresponding products were obtained in very good yields. Mechanistic investigations on the cycloisomerization were carried out by means of both (18) O isotopic experiments and quantum chemical calculations. The results from both, the designed isotopic experiments and theoretical calculations, satisfactorily supported the novel proposed intramolecular [4+2] cycloaddition of a gold-containing furanium intermediate to a carbonyl group, instead of the previous well-accepted [2+2] pathway.  相似文献   

15.
《Tetrahedron letters》2003,44(4):785-788
A novel approach to 6-arylpurines based on [2+2+2]-co-cyclotrimerization of 6-alkynylpurines with various α,ω-diynes is described. Co-cyclotrimerization is catalyzed by Ni- and Co-phosphine catalysts and their choice depends on the substitution pattern of the both reactants.  相似文献   

16.
A domino [4+2]/retro [4+2] cycloaddition process of cyclohexadienes with arylethynes or benzyne providing access to biaryls and polycyclic aromatics has been studied theoretically using density functional theory calculations. It has been found that the initial Diels-Alder (D-A) reaction acts as the rate-determining step and the consequent [4+2] cycloreversion reaction is feasible under the conditions used. Furthermore, the D-A reaction affects the regioselectivity, the origin of which is essentially derived from the good match of orbital coefficients between dienes and dienophiles as shown by using frontier molecular orbital (FMO) theory. Further investigation of the reactivity reveals that the reactions are predicted to fail to occur if an electron-donor group in the diene or an electron-acceptor group in the dienophile is lacking, as a consequence of the increased FMO energy gap. By further exploring the scope of substrates computationally, benzyne as an active dienophile was predicted to react with a variety of dienes in a cascade reaction under mild conditions with a low energy barrier, with the rate-determining step being the retro [4+2] cycloaddition.  相似文献   

17.
1,2,3,4-Tetrahydro-2-oxoquinoline-5-aldehyde (2) was prepared from m-aminobenzoic acid and 3-ethoxyacryloyl chloride (4) in 19 % overall yield. Compound 2 underwent a photochemically induced [4+2]-cycloaddition reaction with various dienophiles upon irradiation in toluene solution. The exo product 10 a was obtained with acrylonitrile (9 a) as the dienophile, whereas methyl acrylate (9 b) and dimethyl fumarate (9 c) furnished the endo products 11 b and 11 c (69-77 % yield). The reactions proceeded at -60 degrees C in the presence of the chiral complexing agent 1 (1.2 equiv) with excellent enantioselectivity (91-94 % ee). The enantiomeric excess increases in the course of the photocycloaddition as a result of the lower product association to 1. The intermediate (E)-dienol 8 was spectroscopically detected at -196 degrees C in an EPA (diethyl ether/isopentane/ethanol) glass matrix. The association of the substrate 2 to the complexing agent 1 was studied by circular dichroism (CD) titration. The measured association constant (K(A)) was 589 M(-1) at room temperature (25 degrees C) and normal pressure (0.1 MPa). An increase in pressure led to an increased association. At 400 MPa the measured value of K(A) was 703 M(-1). Despite the stronger association the enantioselectivity of the reaction decreased with increasing pressure. At 25 degrees C the enantiomeric excess for the enantioselective reaction 2 + 9 a-->10 a decreased from 68 % ee at 0.1 MPa to 58 % ee at 350 MPa. This surprising behavior is explained by different activation volumes for the diastereomeric transition states leading to 10 a and ent-10 a.  相似文献   

18.
"Formal" and standard Ru(II)-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes 1 to alkenes gave bicyclic 1,3-cyclohexadienes in relatively good yields. The neutral Ru(II) catalyst was formed in situ by mixing equimolecular amounts of [Cp*Ru(CH3CN)3]PF6 and Et4NCl. Two isomeric bicyclic 1,3-cyclohexadienes 3 and 8 were obtained depending on the cyclic or acyclic nature of the alkene partner. Mechanistic studies on the Ru catalytic cycle revealed a clue for this difference: (a) when acyclic alkenes were used, linear coupling of 1,6-diynes with alkenes was observed giving 1,3,5-trienes 6 as the only initial reaction products, which after a thermal disrotatory 6e-pi electrocyclization led to the final 1,3-cyclohexadienes 3 as probed by NMR studies. This cascade process behaved as a formal Ru-catalyzed [2 + 2 + 2] cycloaddition. (b) With cyclic alkenes, the standard Ru-catalyzed [2 + 2 + 2] cycloaddition occurred, giving the bicyclic 1,3-cyclohexadienes 8 as reaction products. A complete catalytic cycle for the formal and standard Ru-catalyzed [2 + 2 + 2] cycloaddition of acetylene and cyclic and acyclic alkenes with the Cp*RuCl fragment has been proposed and discussed based on DFT/B3LYP calculations. The most likely mechanism for these processes would involve the formation of ruthenacycloheptadiene intermediates XXIII or XXVII depending on the alkene nature. From these complexes, two alternatives could be envisioned: (a) a reductive elimination in the case of cyclic alkenes 7 and (b) a beta-elimination followed by reductive elimination to give 1,3,5-hexatrienes 6 in the case of acyclic alkenes. Final 6e-pi electrocyclization of 6 gave 1,3-cyclohexadienes 3.  相似文献   

19.
Continuous flow has recently emerged as a powerful enabling technology that greatly improves many reactions’ efficiency. Here, we apply the technology to intermolecular [4+2] annulation of cyclobutylanilines with alkenes, alkynes, and diynes by photoredox catalysis. An across-the-board improvement in the annulation’s efficiency is noticed. Moreover, a gram-scale annulation is successfully demonstrated in continuous flow using a much lower catalyst loading.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号