首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
Titanium dioxide nanoparticle/gold nanoparticle/carbon nanotube (TiO2/Au/CNT) nanocomposites were synthesized, and then characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). A TiO2/Au/CNT nanocomposite-modified glassy carbon (GC) electrode was prepared using the drop coating method and was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric current–time response (I-T). The modified material is redox-active. The nonenzymatically detected amount of ascorbic acid (AA) on the TiO2/Au/CNT electrode showed a linear relationship with the AA concentration, for concentrations from 0.01 to 0.08 μM; the sensitivity was 117,776.36 μA?·?cm?2?·?(mM)?1, and the detection limit was 0.01 μM (S/N?=?3). The results indicated that the TiO2/Au/CNT nanocomposite-modified GC electrode exhibited high electrocatalytic activity toward AA. This paper describes materials consisting of a network of TiO2, Au, and MWCNTs, and the investigation of their synergistic effects in the detection of AA.  相似文献   

2.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

3.
DPPH (2,2-diphenyl-1-picrylhydrazil), a free radical-containing organic compound, is used widely to evaluate the antioxidant properties of plant constituents. Here, we report an efficient electroactive DPPH molecular system with excellent electrocatalytic sensor properties, which is clearly distinct from the traditional free radical-based quenching mechanism. This unusual molecular status was achieved by the electrochemical immobilization of graphene oxide (GO)-stabilized DPPH on a glassy carbon electrode (GCE). Potential cycling of the DPPH adsorbed-GCE/GO between ??1 and 1 V (Ag/AgCl) in a pH 7 solution revealed a stable and well-defined pair of redox peaks with a standard electrode potential, E0′?=?0?±?0.01 V (Ag/AgCl). Several electrochemical characterization studies as well as surface analysis of the GCE/GO@DPPH-modified electrode by transmission electron microscopy, Raman, and infrared spectroscopy collectively identified the imine/amine groups as the redox centers of the electroactive DPPH on GO. The use of different carbon-supports showed that only oxygen-functionalized GO and MWCNTs could provide major electroactivity for DPPH. This highlights the importance of a strong hydrogen-bonded network structure assisted by the concomitant π-π interactions between the organic moiety and oxygen function groups of carbon for the high electroactivity and stability of the GCE/GO@DPPH-NH/NH2-modified electrode. The developed electrode exhibited remarkable performance towards the electrocatalytic oxidation of NADH at 0 V (Ag/AgCl). The amperometric i-t sensing of NADH showed high sensitivity (488 nA μM?1 cm?2) and an extended linear range (50 to 450 μM) with complete freedom from several common biochemical/chemical interferents, such as ascorbic acid, hydrazine, glucose, cysteine, citric acid, nitrate, and uric acid.  相似文献   

4.
《Electroanalysis》2017,29(4):1103-1112
Three dimensional graphene‐multiwalled carbon nanotube nano composite (3DG/MWCNTs−Nc) was synthesized by simple hydrothermal method for the amperometric determination of caffeic acid (CA). The prepared nanocomposite was characterized by scanning electron microscopic technique (SEM), ultraviolet‐visible spectroscopy (UV), Raman spectroscopy and infrared spectroscopy (IR). Moreover, the interfacial electron transfer properties of the modified electrode were carried out by the electro chemical impedance spectroscopy (EIS). Besides, the electro chemical performance of the modified electrode was carried out by the cyclic voltammetry (CV) and amperometric (i‐t ) technique. The proposed electrode was exhibited an enhanced electrocatalytic activity towards the detection of CA. Under the optimal condition, the 3DG/MWCNTs−Nc modified electrode displayed a linear range from 0.2 to 174 μM, detection limit (LOD) 17.8 nM and sensitivity of 5.8308 μA μM−1 cm−2 and on applied potential + 0.2 V. These result showed, 3DG/MWCNTs−Nc modified electrodes showed good repeatability, reproducibility, and higher stability. In addition, the fabricated electrode was then successfully used to determine the CA in real samples with satisfactory recoveries. Which suggests that the 3DG/MWCNTs−Nc as a robust sensing materials for the electrochemical detection of CA.  相似文献   

5.
An electrochemical sensing platform was developed for the amperometric detection of β-nicotinamide adenine dinucleotide (NADH) through the integration of a multi-walled carbon nanotube (MWCNT) into electropolymerized phenothiazine dyes. The composite containing MWCNT and poly(phenothiazine) was prepared by electro-oxidative polymerization of phenothiazine derivatives, Azure B, Azure A and thionine, into an MWCNT/ poly(diallyldimethylammonium chloride) (PDDA) multilayer, which was constructed by electrostatic layer-by-layer assembly on a glassy carbon electrode. The three phenothiazine monomers used in this study exhibited similar electrochemical behaviors. Azure B was used extensively as a model monomer for the investigation. Electrochemical techniques and scanning electron microscopy were used to demonstrate that the porous composite was formed and that the carbon nanotube served as a nano-sized backbone for the loading of polymeric phenothiazine. The electrocatalytic current for NADH oxidation was enhanced as the number of layers increased, implying that the increase of NADH-accessible poly(phenothiazine) and the three-dimensional arrangement of the poly(phenothiazine)-coated MWCNT in the composite facilitated electron and NADH transfer. Under optimal conditions, the detection limit for NADH decreases to 7.0 × 10?8?M at a potential of 0.1 V (versus Ag/AgCl) using a {MWCNT/PDDA}8?poly(Azure B) composite modified glassy carbon electrode, with a response time of about 5 s. This work demonstrates that the electropolymerization of the phenothiazine monomer into a pre-formed multilayer containing MWCNT can be used for the controllable preparation of stable MWCNT/poly(phenothiazine) composites on electrode surfaces, which have the potential to provide a platform for electrochemical biosensors based on NAD+-dependent dehydrogenase enzymes.  相似文献   

6.
利用静电层层组装的方式在印刷电极表面制备了(多壁碳纳米管/邻苯二甲酸二乙二醇二丙烯酸酯(PDDA))n多层膜,采用电位扫描电聚合法在修饰有多层膜的印刷电极表面聚合甲苯胺蓝,制备了聚甲苯胺蓝-(多壁碳纳米管/PDDA)n杂化膜修饰电极。扫描电镜实验表明,多壁碳纳米管均匀分布在杂化膜中,且多壁碳纳米管的掺杂使杂化膜表现出明显的多孔性。电化学实验表明,杂化膜具有良好的导电性且多壁碳纳米管的掺杂显著增加了聚甲苯胺蓝在电极表面的担载量,提高了检测灵敏度。在pH7.4的磷酸盐缓冲液中,杂化膜修饰电极对β-烟酰胺腺嘌呤二核苷酸(NADH)的氧化具有良好的催化作用,与裸电极相比氧化电位降低了560 mV,灵敏度明显提高。在8.7×10-8~1.3×10-4mol/L范围内,NADH的浓度与氧化电流呈线性关系,检出限为2.8×10-8mol/L,该修饰电极可用于NADH的测定。  相似文献   

7.
Salimi A  Hallaj R  Ghadermazi M 《Talanta》2005,65(4):888-894
The carbon ceramic electrode prepared with sol-gel technique is modified by a thin film of chlorogenic acid (CGA). By immersing the carbon ceramic electrode in aqueous solution of chlorogenic acid at less than 2 s a thin film of chlorogenic acid adsorbed strongly and irreversibly on the surface of electrode. The cyclic voltammetry of the resulting modified CCE prepared at optimum conditions shows a well-defined stable reversible redox couple due to hydroquinone/quinone system in both acidic and basic solutions. The modified electrode showed excellent electrocatalytic activity toward NADH oxidation and it also showed a high analytical performance for amperometric detection of NADH. The catalytic rate constant of the modified carbon ceramic electrode for the oxidation of NADH is determined by cyclic voltammetry measurement. Under the optimised conditions the calibration curve is linear in the concentration range 1-120 μm. The detection limit (S/N = 3) and sensitivity are 0.2 μM and 25 nA μM−1.The results of six successive measurement-regeneration cycles show relative standard deviations of 2.5% for electrolyte solution containing 1 mM NADH, indicating that the electrode renewal gives a good reproducible and antifouling surface. The advantages of this amperometric detector are: high sensitivity, excellent catalytic activity, short response time t < 2 s, remarkable long-term stability, simplicity of preparation at short time and good reproducibility.  相似文献   

8.
Zhou H  Yang W  Sun C 《Talanta》2008,77(1):366-371
A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (Ks) and charge transfer coefficient (α) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s−1 and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 μM to 1.5 mM and the detection limit was 2.8 μM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility.  相似文献   

9.
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM?1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
Figure
A highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with gold nanoparticles/sulfonated graphene (AuNPs/SG) composites is presented  相似文献   

10.
The direct electrochemistry of catalytically active cytochrome C (Cyt c) adsorbed together with a 3-dimensional network of chemically synthesized graphene on glassy carbon electrode has been readily obtained in aqueous phosphate buffer. Direct electrical communication between the redox center of Cyt c and the modified graphene-based electrode was established. The modified electrode was employed as a high-performance hydrogen peroxide (H2O2) biosensor. The Cyt c present in modified electrode exhibited a pair of quasi-reversible redox peaks with a midpoint potential of ?0.380 and ?0.2 V, cathodic and anodic, respectively. Investigations into the electrocatalytic activity of the modified electrode upon hydrogen peroxide exposure revealed a rapid amperometric response (5 s). Under optimized conditions, the linear range of response to H2O2 concentration ranged from 5 × 10?7 to 2 × 10?4 M with a detection limit of 2 × 10?7 M at a signal-to-noise ratio of 3. The stability, reproducibility, and selectivity of the proposed biosensor are discussed in relation to the morphology and composition of the modified electrode.  相似文献   

11.
We have prepared a novel sensor for hydrogen peroxide that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes wired to CuO nanoflowers. The nanoflowers were characterized by X-ray powder diffraction, and the electrode was characterized by cyclic voltammetry (CV) and scanning electron microscopy. The response of the modified electrode towards hydrogen peroxide was investigated by CV and chronoamperometry and showed it to exhibit high electrocatalytic activity, with a linear range from 0.5?μM to 82?μM and a detection limit of 0.16?μM. The sensor also displays excellent selectivity and stability.
Graphical abstract
We have prepared a novel sensor for hydrogen peroxide (H2O2) that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes (MWCNTs) wired to CuO nanoflowers. The scheme shows the construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2. When H2O2 was added, the cathodic peak current of the CuO-MWCNTs/GCE remarkably increased while its anodic peak current obviously decreased. By increasing the concentration of H2O2, the cathodic peak current further increased while its anodic peak current further decreased. Indicating CuO-MWCNTs/GCE has a remarkable electrocatalytic activity for H2O2. The scheme. The construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2  相似文献   

12.
A new approach is described for the photoelectrocatalytic oxidation of Reduced ß-Nicotinamide Adenine Dinucleotide (NADH). It is based on a glassy carbon electrode (GCE) modified with a film of poly-Neutral Red (poly-NR) that is obtained by electropolymerization. Electrochemical measurements revealed that the modified electrode displays electrocatalytic and photo-electrocatalytic activity towards oxidation of NADH. If irradiated with a 250-W halogen lamp, the electrode yields a strongly increased electrocatalytic current compared to the current without irradiation. Amperometric and photo-amperometric detection of NADH was performed at +150 mV vs. Ag/AgCl/KClsat and the currents obtained are linearly related to the concentration of NADH. Linear calibration plots are obtained in the concentration range from 1.0 μM to 1.0 mM for both methods. However, the slope of the current-NADH concentration curve of the photo-electrocatalytic procedure was 2-times better than that obtained without irradiation.
Figure
A poly-Neutral Red modified glassy carbon electrode (poly-NR/GCE) was prepared by electropolymerization process. This modified electrode displays electrocatalytic and also photoelectrocatalytic activity towards oxidation of NADH. Compared with electrocatalytic oxidation of NADH, the current response was increased about 2.0 times in the photoelectrocatalytic oxidation process.  相似文献   

13.
A novel electrochemical platform based on nickel oxide (NiO) nanoparticles and TiO2–graphene (TiO2–Gr) was developed for the direct electrochemistry of glucose oxidase (GOD). The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The experimental results demonstrated that the nanocomposite well retained the activity of GOD and the modified electrode GOD/NiO/TiO2–Gr/GCE exhibited excellent electrocatalytic activity toward the redox of GOD as evidenced by the significant enhancement of redox peak currents in comparison with bare GCE. The biosensor responded linearly to glucose in the range of 1.0–12.0?mM, with a sensitivity of 4.129?μA?mM?1 and a detection limit of 1.2?×?10?6?M under optimized conditions. The response time of the biosensor was 3?s. In addition, the developed biosensor possessed good reproducibility and stability, and there was negligible interference from other electroactive components.  相似文献   

14.
We describe a simple method for preparing Au‐TiO2/graphene (GR) nanocomposite by deposition of Au nanoparticles (NPs) on TiO2/GR substrates. The as‐prepared Au‐TiO2/GR was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The presence of Au NPs on TiO2/GR surface remarkably improves the electrocatalytic activity towards the oxidation of hydrogen peroxide (H2O2) and β‐nicotinamide adenine dinucleotide (NADH). The Au‐TiO2/GR modified glassy carbon (GC) electrode exhibits good amperometric response to H2O2 and NADH, with linear range from 10 to 200 µM and 10 to 240 µM, and detection limit of 0.7 and 0.2 µM, respectively.  相似文献   

15.
In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl42− and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5 s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 μM to 2.28 mM with a correlation coefficient of R = 0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.  相似文献   

16.
Jiang Y  Zhang X  Shan C  Hua S  Zhang Q  Bai X  Dan L  Niu L 《Talanta》2011,85(1):76-81
Prussian blue (PB) was grown compactly on graphene matrix by electrochemical deposition. The as-prepared PB-graphene modified glassy carbon electrode (PB-graphene/GCE) showed excellent electrocatalytic activity towards both the reduction of hydrogen peroxide and the oxidation of hydrazine, which could be attributed to the remarkable synergistic effect of graphene and PB. The PB-graphene/GCE showed sensitive response to H2O2 with a wide linear range of 10-1440 μM at 0.0 V, and to hydrazine with a wide linear range of 10-3000 μM at 0.35 V. The detection limit was 3 μM and 7 μM, respectively, and both of them had rapid response within 5 s to reach 95% steady state response. The wide linear range, good selectivity and long-time stability of the PB-graphene/GCE make it possible for the practical amperometric detection of hydrogen peroxide and hydrazine.  相似文献   

17.
In this work, an amperometric H2O2 sensor based on TiO2/MWCNTs electrode is reported. TiO2 nanoparticles were synthesized on vertically aligned multiwalled carbon nanotube (MWCNT) arrays by electrodeposition. The morphology of the TiO2/MWCNTs was characterized by scanning electron microscopy (SEM). The electrochemical performance of the TiO2/MWCNTs electrode for detection of H2O2 was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. The TiO2/MWCNTs electrode displays high electrocatalytic activity towards oxidation of H2O2 in 0.1 M phosphate buffer solution (PBS, pH 7.4). At an applied potential of +0.40 V, the TiO2/MWCNTs electrode exhibits a linear dependence (R=0.998) in the H2O2 concentration up to 15.0×10?3 M with a sensitivity of 13.4 μA mM?1 and detection limit of 4.0×10?7 M with signal/noise=3. The optimal response time is less than 5 s with addition of 1 mM H2O2. The TiO2/MWCNTs electrode presents stable, high sensitivity and also exhibits fast amperometric response to the detection of H2O2, which is promising for the development of H2O2 sensor.  相似文献   

18.
This work reports the analytical applications of a graphene paste electrode (GrPE) for the quantification of dopamine, ethanol and phenolic compounds. Dopamine was detected by differential pulse voltammetry‐adsorptive stripping with medium exchange at submicromolar levels even in the presence of high excess of ascorbic acid and serotonin. The electrocatalytic activity of graphene towards the oxidation of NADH and the reduction of quinones allowed the sensitive amperometric determination of ethanol and phenols using GrPE modified with alcohol dehydrogenase/NAD+ or polyphenol oxidase, respectively, with successful applications in real samples like alcoholic beverages and tea.  相似文献   

19.
We have prepared a glassy carbon electrode modified with poly-2,6-pyridinedicarboxylic acid and with magnetic Fe3O4 nanoparticles. This modification enhances the effective surface area and the electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) in addition to providing positively charged groups for electrostatic assembly of the phosphate group of NADH. The modified electrode responds linearly to NADH in the range from 5?×?10?8 to 2.5?×?10?5?M and gives a lower detection limit of 1?×?10?8?M. It displays satisfactory selectivity and reproducibility. The sensor was applied to rapid screening of plant extracts for their antioxidant properties.
Figure
Poly-2,6-pyridinedicarboxylic acid (PDC) was fabricated by electropolymerizing 2,6-pyridinedicarboxylic acid with cyclic voltammetry (CV) on the glassy carbon electrode (GCE) surface. The magnetic Fe3O4 nanoparticles treated with aminopropyltriethoxysilane (APTS) modified on the PDC/GCE to form APTS-Fe3O4/PDC composite film. The APTS-Fe3O4/PDC film had enhanced the effective electrode surface area and provided positively charged groups for electrostatic assembly of phosphate group of NADH.  相似文献   

20.
A new carbon nanotubes modified electrode (poly‐Nq‐MWCNTs/GCE) was fabricated by electropolymerization of 1,2‐naphththoquinone to the surface of multi‐walled carbon nanotubes modified electrode by casting method. The morphology of the nanocomposite was characterized by scanning electron microscopy. Cyclic voltammetry and chronoamperometry were applied to investigate the electrochemical properties of the poly‐Nq‐MWCNTs nanocomposite modified electrode. The result of electrochemical experiments showed that such modified electrode had a favorable catalytic ability to oxidation of β‐nicotinamide adenine dinucleotide (NADH). The resulted sensor was sensitiveness to NADH and achieved 95β of the steady‐state current within 5s. Furthermore, the anodic peak current was linear to the concentration of NADH for the range from 1.0 μM to 0.14 mM. The linear equation was: I(μA) = 0.3987 + 0.1035c (μmol/L), the correlation coefficient r = 0.9962, the detect limit is down to 1 × 10?7 M (S/N = 3) and the sensitivity is 0.1035 μA/mmol. The well catalytic activity of the sensor was ascribed to the synergistic effect role played by MWCNTs and poly‐Nq. Moreover, the based sensor possesses good stability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号