首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present direct numerical simulations of the interaction between a vortex ring and a stationary sphere for Re = 2,000. We analyze the vortex dynamics of the ring as it approaches the sphere surface, and the boundary layer formed on the surface of the sphere undergoes separation to form a secondary vortex ring. This secondary vortex ring can develop azimuthal instabilities, which grow rapidly as it interacts with the primary ring. The azimuthal instabilities on both rings are characterized by analysis of the azimuthal component decomposition of the axial vorticity.  相似文献   

2.
The first stage of the instability of a vortex ring is linear and characterized by the growth of an azimuthal stationary wave which develops around the ring. Theoretical works predict its origin, shape, number of waves and growth rate. Apart for the growth rate, experimental and numerical results in viscous fluids fit well with the predictions based on an ideal fluid hypothesis. On the other hand, the next stages of the development of the instability (which are non-linear) are not well known. Only few phenomena are described, in an isolated way, in various partial contributions. The aim of this paper is to report on a complete experimental investigation of the non-linear phase of the instability of the vortex ring. The vortices were produced in water and their Reynolds number Re p was varied from 2,650 to 6,100. Visualizations were performed using planar laser induced fluorescence and measurements with 2D2C and 2D3C particle image velocimetry. Based on a Fourier analysis of the results, it appears that the non-linear phase begins with the development of harmonics of the linear modes (first unstable modes). But the growth of those harmonics is rapidly stopped by the development of low order modes. Then appears an m=0 mode, which corresponds to a mean azimuthal velocity around the vortex. Simultaneously, secondary vortical structures develop all around the vortex in its peripheral zone. These vortical structures are linked with the ejection of vorticity in the wake of the ring and they appear just before the transition towards turbulence. A tentative is made here to place all these phenomena chronologically, in order to propose a scenario for the transition from the linear phase to turbulence.  相似文献   

3.
4.
Vortex shedding in the wake of two-dimensional bluff bodies is usually accompanied by three dimensional instabilities. These instabilities result in streamwise and vertical vorticity components which occur at a certain spanwise wavelength. The spanwise wavelength of the instabilities (λZ) depends on several parameters, including profile geometry and Reynolds number. The objective of the present work is to study the three dimensional wake instabilities for a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, and to manipulate these instabilities to control the aerodynamic forces. Results of numerical simulations of flow around the body at Re(d) = 400, 600, and 1000, as well as planar Laser Induced Fluorescence (LIF) flow visualizations at Re(d) = 600 and 1000 are analyzed to determine the wake vorticity structure and λZ. Based on the findings of these analyses, an active flow control mechanism for attenuation of the fluctuating aerodynamic forces on the body is proposed. The flow control mechanism is comprised of a series of trailing edge injection ports distributed across the span, with a spacing equal to λZ. Injection of a secondary flow leads to amplification of the three dimensional instabilities and disorganization of the von Kármán vortex street. Numerical simulations indicate that the flow control mechanism can attenuate the fluctuating aerodynamic forces at lower Reynolds numbers (Re(d) = 400 and 600) where λZ is constant in time. However, the control mechanism loses its effectiveness at Re(d) = 1000, due to the temporal variations of λZ.  相似文献   

5.
The observed strength and stress-strain response of [O2/±45] s Thornel-epoxy laminates under varying biaxial-stress ratios are compared with those predicted numerically. Both flat and ring-type off-axis composite specimens are employed by which to generate experimentally the biaxial data. While the numerical predictions tend to overestimate the observed laminate strengths, the several predicted stress-strain curves agree well with each other and with experiment. The off-axis ring specimens produced significantly higher strengths than did the corresponding flat specimens.  相似文献   

6.
In this study, the numerical models for swirling flows developed by Li et al and Zhou for lattice Boltzmann method (LBM) are chosen. These models were firstly validated using the Couette-Taylor flow between two concentric cylinders simulations. Numerical results showed the efficiency of the Zhou's model. Numerical simulation results using LBM are in good agreement for the steady and unsteady regimes compared to the literature review. In a second step, the Zhou model was then adopted to our study to determine the Couette-Taylor instabilities with an axial flow. Two protocols are tested. The first one (direct protocol) starts with an azimuthal flow without any axial flow (Re = 0). Once the regime is established, an axial flow is then superposed to the Couette-Taylor flow (with a sudden or a progressive manner). The second protocol (inverse protocol) starts with an axial flow at a given Reynolds number (Poiseuille flow). Once the regime is established, an azimuthal flow is the executed (with a sudden or a progressive manner). The effect of various parameters controlling the physical situation is also discussed. The increase of the azimuthal velocity mainly led to the emergence and development of Taylor vortices. Its influence decreases when the axial Reynolds number increases. The relevant result for this study is the change of the critical axial Reynolds number Rec (total disappearance of instabilities) with both protocols and both manners.  相似文献   

7.
 Experiments of helical excitation using piezoelectric actuators on jet flows and lifted flames are performed to enhance the understanding of the effects of vortical structures of various instability modes on the stabilization mechanism of the lifted flame. In addition to the common ring and braid structures, five or seven azimuthal fingers (or lobes) can be identified in the transverse image of the jet near field. Excitation with various helical modes enhances the azimuthal structures and entrainment in the near field. When helically excited with the asymmetric m=1 mode, one of the fingers is enhanced and may evolve into a strong streamwise vortex. The streamwise vortices generated in the braid region between the adjacent ring vortices may enhance fuel-air mixing due to additional azimuthal entrainment upstream of a lifted flame when helically excited with the m=1 mode. Therefore, the streamwise vortex serves as an additional path of high probability of premixed flammable layer for the upstream propagation of the lifted flame so that the flame base on one side of the lifted flame may extend farther upstream and the flame base is inclined. In addition to the inclined flame base, multiple-legs phenomenon is also observed in the flame base, which is strongly associated with fingers of the helical modes of the jet flow. Received: 21 August 1997/Accepted: 24 January 1999  相似文献   

8.
The instability of a pressure-induced laminar separation bubble is examined experimentally on an axisymmetric diffuser for a Reynolds number range 7,800 ≤ ≤ 11,400 for an inlet pipe diameter D 1 (50 mm) and as mean input flow velocity 4.2 m/s ≤ u m ≤ 6.1 m/s. A characterization of the base flow shows a wide-spread separation at the smooth diverging contour which gives rise to a massive amplification of instabilities. Controlled disturbances are introduced by means of a slot and a membrane actuator to trigger the transition, and the receptivity of the perturbations to the laminar boundary layer is evaluated. Different axisymmetric and azimuthal disturbances are applied in order to study their influence on the laminar–turbulent transition. The measurements show a clear dependence of the transition scenario and the reattachment length on the actuation mode.  相似文献   

9.
The axisymmetric vortex sheet model developed by Nitsche & Krasny (1994) has been extended to study the formation of vortex rings (pairs) at the edge of circular (2D) tube and opening. Computations based on this model are in good agreement with the experiments (Didden (1979) for circular tube and Auerbach (1987) for 2D tube and opening). Using this new model, evidences are provided to show that the main failure of the similarity theory (the false prediction of axial trajectory of vortex ring) is due to its ignorance of the self-induced ring velocity (mutual induction for vortex pair). We further reason why the similarity theory succeeds in its prediction of radial movement of vortex ring. The effects of various parameters such as turning angle α and piston speedU p (t) on the formation of vortex ring are investigated. Numerical result shows that turning angle α has no effect on circulation shed τ. We also discuss Glezer (1988)'s summary on the influence ofU p upon the shedding circulation, and finally give the variation of core distribution of vortex ring with α andU p (t). The project is supported by National Natural Science Foundation of China and Doctoral Program of Institution of Higher Education  相似文献   

10.
This paper analyses the influence of the inlet swirl on the structure of incompressible inviscid flows in pipes. To that end, the inviscid evolution along a pipe of varying radius with a central body situated inside the pipe is studied for three different inlet swirling flows by solving the Bragg–Hawthorne equation both asymptotically and numerically. The downstream structure of the flow changes abruptly above certain threshold values of the swirl parameter (L). In particular, there exist a value Lr above which a near-wall region of flow reversal is formed downstream, and a critical value Lf above which the axial vortex flow breaks down. It is shown that the dependence upon the pipe geometry of these critical values of the swirl parameter varies strongly with the inlet azimuthal velocity profile considered. An excellent agreement between asymptotic and numerical results is found.  相似文献   

11.
Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines, which are unfortunately more and more prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. In this article, full annular Large Eddy Simulations (LES) of two helicopter combustors, which differ only on the swirlers' design, are performed. In both computations, LES captures self-established rotating azimuthal modes. However, the two cases exhibit different thermo-acoustic responses and the resulting limit-cycles are different. With the first design, a self-excited strong instability develops, leading to pulsating flames and local flashback. In the second case, the flames are much less affected by the azimuthal mode and remain stable, allowing an acceptable operation. Hence, this study highlights the potential of LES for discriminating injection system designs. To cite this article: P. Wolf et al., C. R. Mecanique 337 (2009).  相似文献   

12.
In the first part of this paper a numerical strategy is developed for the numerical simulation of the coextrusion process. Coextrusion consists of extruding many polymers in the same die in order to combine their respective properties. The die is generally flat and quite large and consequently a two-dimensional approximation is sufficient. The main difficulty is to accurately predict the interfaces between the different layers of polymers. A finite element method based on a pseudoconcentration function is developed to calculate these fluid interfaces. Numerical results are presented for the coextrusion of up to five fluids. In the second part of the paper the above strategy is slightly modified to simulate the film-casting process. In this case a polymer is stretched (with a draw velocity UL) at the exit of the die in order to produce a very thin layer of polymer that is cooled in contact with a chill roll. Only one polymer-air interface has to be computed. The draw ratio is defined as Dr = UL/U , where U is the mean velocity of the polymer at the exit of the die. As the draw ratio is increased, instabilities appear and numerical results put in evidence the draw resonance phenomenon.  相似文献   

13.
High-speed rotors are often supported in floating ring bearings because of their good damping behavior. In contrast to conventional hydrodynamic bearings with a single oil film, full-floating ring bearings consist of two oil films: An inner and an outer oil film. As single oil-film bearings, full-floating ring bearings also show the typical fluid-film-induced instabilities (self-excited vibrations). Both inner and outer oil films can become unstable and exhibit oil whirl/whip instabilities. The paper at hand considers a Laval (Jeffcott) rotor, which is symmetrically supported in full-floating ring bearings, and investigates the occurring oil whirl/whip effects by means of run-up simulations. It is shown that the inner oil film, which usually becomes unstable first, gives rise to a limit-cycle oscillation with an exactly circular rotor orbit, if gravity and imbalance are neglected. Interesting is the instability generated by the outer oil film. The calculations demonstrate that instability in the outer oil film does not lead to a simple circular limit-cycle orbit. Whirl/whip-induced limit-cycle oscillations generated by the outer oil film are more complex and entail a coupled circumferential and radial motion, although the mechanical problem is radially symmetric, if gravity and imbalance are neglected. Thus, whirl/whip instability in the outer fluid film may be interpreted as symmetry breaking. Finally, a further kind of bifurcation/instability occurring in rotors supported in full-floating ring bearings—called Total Instability in this paper—is analyzed. It is shown that Total Instability is caused by synchronization of two limit cycles, namely synchronization of the inner and outer oil whirl/whip. Total Instability is of practical interest and observed in real technical rotor systems, and frequently leads to complete rotor damage.  相似文献   

14.
The flow structure in the confined space between the outer ring, the cage and the balls of a bearing is investigated using a large scale model allowing to perform visualizations, by tracer and dot-paint techniques, and velocity measurements, by Laser Doppler Velocity (LDV), through the transparent rotating outer ring. The visualization results show, in the region between two consecutive balls, the existence of a reversed flow on the cage surface resulting from the aspiration and blowing effect of the rotation of the balls in their cage housings. Systematic measurements of azimuthal velocities in different cross-sections of the gap confirmed the qualitative visualziation findings in laminar flow. For turbulent flow the results show that the extension of the reversed flow region is reduced and the reversed velocities are proportionally smaller as compared to the laminar case.List of symbols R radial position - R b radius of the balls - R c radius evaluated at the external surface of the cage - R e radius evaluated at the inner wall of the outer cylinder - R i radius evaluated at the outer wall of the inner cylinder - R m radius of the center of the balls - Re 0 Reynolds number in the space between the fixed inner cylinder and the rotating outer cylinder: Re 0 = e R e(R e - R i)/v - Re 1 Reynolds number in the space between the inner and outer cylinders: Re 1 = 2e R e(R e - R i)/v - Re Reynolds number in the outer cylinder/cage gap: Re = e R e(R e - R c)/v - U axial velocity - V azimuthal velocity - V e azimuthal velocity of the internal wall of the outer cylinder - V i azimuthal velocity of the external wall of the inner cylinder - Z axial position - azimuthal position - kinematic viscosity - i angular velocity of the inner cylinder - e angular velocity of the outer cylinder - c angular velocity of the balls about the axis of the bearing - r angular velocity of the balls about their center This work was performed as part of a research effort aimed at investigating the many aspect of ball bearings flooded in cryogenic liquids and supported financially by the Centre National d'Etudes Spatiales (CNES) la Société Européenne de Propulsion (SEP) and the Centre National de la Recherche Scientifique (CNRS). The authors wish to deeply thank the many individuals, and in particular Dr. G. Jeanblanc from CNES and Mrs. Pierre and Moëllo from SEP, for their continuous encouragement.  相似文献   

15.
Characteristics of high Mach number compressible vortex ring generated at the open end of a short driver section shock tube is studied experimentally using high-speed laser sheet-based flow visualization. The formation mechanism and the evolution of counter rotating vortex ring (CRVR) formed ahead of the primary vortex ring are studied in details for shock Mach number (M) 1.7, with different driver section lengths. It has been observed that the strength of the embedded shock, which appears at high M, increases with time due to the flow expansion in the generating jet. Strength of the embedded shock also varies with radius; it is strong at smaller radii and weak at larger radii; hence, it creates a velocity gradient ahead of the embedded shock. At critical Mach number (M c ≥ 1.6), this shear layer rolls up and forms a counter rotating vortex ring due to Biot-Savart induction of the vortex sheet. For larger driver section lengths, the embedded shock and the resultant shear layer persists for a longer time, resulting in the formation of multiple CRVRs due to Kelvin–Helmholtz type instability of the vortex sheet. CRVRs roll over the periphery of the primary vortex ring; they move upstream due to their self-induced velocity and induced velocity imparted by primary ring, and interact with the trailing jet. Formation of these vortices depends strongly upon the embedded shock strength and the length of the generating jet. Primary ring diameter increases rapidly during the formation and the evolution of CRVR due to induced velocity imparted on the primary ring by CRVR. Induced velocity of CRVR also affects the translational velocity of the primary ring considerably.  相似文献   

16.
Flow visualization is performed on an elastically-dominated instability in several similar Boger fluids in Taylor-Couette flow. The onset and evolution of secondary flow are observed over a range of shear rates using reflective mica platelet seeding. Sequences of ambiently and sheet-illuminated images were digitally processed. Rotation of the inner cylinder was ramped from rest to its final value over a time on the order of a polymer relaxation time. Dilute solutions of high molecular weight polyisobutylene in oligomeric polybutene manifest a flow transition at a Deborah number, De s = s 1.5 with a Taylor number of 0.00022 in a cell with dimensionless gap ratio = 0.0963. At this transition, simple azimuthal shearing is replaced by steady, roughly square, axisymmetric counter-rotating vortices grossly similar to the well-known Taylor vortex flow that is observed at De s = 0, Ta = 3612. At De s = 3.75, Ta = 0.0014, an axisymmetric oscillatory secondary flow develops initially but is replaced by the steady vortices. At De s = 7.5, Ta = 0.0054, the oscillatory and vortex flow coexist and possess an irregular cellular cross-section. A wide span of growth rates is observed: the ratio of onset to polymer relaxation time ranges from 170000 at De s = 1.5 to O(10) at De s > 5. The role of inertia was explored through changing the solvent viscosity. A transition similar to the one that occurs at De s = 3.75, Ta = 0.0014, from the base azimuthal shearing flow to axisymmetric vortices, was also observed with a much lower viscosity fluid at De s = 3.3, Ta = 74.  相似文献   

17.
Compressible subsonic turbulent starting jet with a relatively large Reynolds number of significant practical importance is investigated using large eddy simulation (LES), starting from a smooth contraction nozzle. The computational domain of truncated conical shape is determined through the comparison of the time-averaged numerical solution with the particle imaging velocimetry measurements for the steady jet. It is shown that the starting jet consists of a leading vortex ring followed by a quasi-steady jet, and the instantaneous velocity field exhibits contraction and expansion zones, corresponding to the high pressure (HP) and low pressure (LP) regions formed by the convecting vortex rings, and are related to the Kelvin-Helmholtz instability. The thin boundary layer inside the smooth contraction nozzle evolves into a shear layer at the nozzle exit and develops with the downstream penetration of the jet. Using λ 2 criterion, the formation and evolution of the vortical structures are temporally visualized, illustrating distortion of vortex rings into lobed shapes prior to break-down. Rib-shape streamwise vortex filaments exist in the braid region between a pair of consecutive vortex rings due to secondary instabilities. Finally, formation and dynamics of hairpin vortices in the shear layer is identified.  相似文献   

18.
Three-dimensional numerical simulation of detonations in coaxial tubes   总被引:2,自引:1,他引:1  
Three-dimensional numerical simulation of detonations in both a circular tube and a coaxial tube are simulated to reveal characteristics of single spinning and two-headed detonations. The numerical results show a feature of a single spinning detonation which was discovered in 1926. Transverse detonations are observed in both tubes, however, the single spinning mode maintains the complex Mach reflection whereas the two-headed mode develops periodically from the single Mach reflection to the complex one. The calculated cell aspect ratio for the two-headed mode changes from 1.09 to 1.34 as the radius of axial insert increases from r 1/R = 0.1 to 0.9. The calculated cell aspect ratio for r 1/R = 0.1 is close to the experimental results without an axial insert. The formation of an unreacted gas pocket behind the detonation front was not observed in the single spinning mode; however, the two-headed mode has unreacted gas pocket behind the front near the axial insert.   相似文献   

19.
We investigate, both experimentally and numerically, the fluid flow in a spherical shell with radius ratio ri/ro=2/3. Both spheres rotate about a common axis, with i>o. The basic state consists of a Stewartson layer situated on the tangent cylinder, the cylinder parallel to the axis of rotation and touching the inner sphere. If the differential rotation is sufficiently large, non-axisymmetric instabilities arise, with the wavenumber of the most unstable mode increasing with increasing overall rotation. In the increasingly supercritical regime, a series of mode transitions occurs in which the wavenumber decreases again. The experimental and numerical results are in good agreement regarding this basic sequence of mode transitions, and the numerics are then used to study some of the finer details of the solutions that could not be observed in the experiment.  相似文献   

20.
The time evolution of finite amplitude axisymmetric perturbations (Taylor cells) to the purely azimuthal, viscoelastic, cylindrical Couette flow was numerically simulated. Two time integration numerical methods were developed, both based on a pseudospectral spatial approximation of the variables, efficiently implemented using fast Poisson solvers and optimal filtering routines. The first method, applicable for finite Re numbers, is based on a time-splitting integration with the divergence-free condition enforced through an influence matrix technique. The second one, is based on a semi-implicit time integration of the constitutive equation with both the continuity and the momentum equations enforced as constraints. Stability results for an upper convected Maxwell fluid were obtained for the supercritical bifurcations, either steady or time-periodic, developed after the onset of instabilities in the primary flow. At small elasticity values, ? ≡ De/Re, the time integration of finite amplitude disturbances confirms the stability of the single branch of steady Taylor cells. At intermediate ? values the rotating wave family of time-periodic solutions developed at the onset of instability is stable, whereas the standing wave is found to be unstable. At high ? values, and in particular for the limit of creeping flow (? = ∞), the present study shows that the rotating wave family is unstable and the standing (radial) wave is stable, in agreement with previous finite-element investigations. It is thus shown that spectral techniques provide a robust and computationally efficient method for the simulation of complex, non-linear, time-dependent viscoelastic flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号