首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The rheological behavior of unentangled and entangled semidilute solution of anionic polyelectrolyte sodium carboxymethyl cellulose (NaCMC) containing cationic surfactant cetyltrimethylammonium bromide (C16TAB) was investigated. The results reveal that the rheological properties of these semidilute NaCMC solutions depend on the amount of C16TAB added. In the unentangled semidilute NaCMC solution (0.5 g/L), the viscosity decreases with the increase of C16TAB amount in the low surfactant concentration region (below the critical aggregation concentration, CAC). However, in high surfactant concentrations (above CAC), the viscosity decreases sharply with the increase in C16TAB amount. It is found that viscosity change of NaCMC solution could be described using Colby’s model when surfactant concentrations are between CAC and saturated concentration (Cs), suggesting that no inter-polymer interaction exists between C16TAB and NaCMC in the unentangled semidilute solution. However, for the entangled semidilute NaCMC solution (5 g/L), the addition of C16TAB leads to an increase in viscosity. Meanwhile, the solution exhibits an enhanced shear thinning behavior due to adding more C16TAB than 1 mM. The viscosity increase is ascribed to the physical cross linking of surfactant micelles with NaCMC chains. Furthermore, it is suggested that the enhanced shear thinning behavior results from weak interaction between NaCMC chains and C16TAB micelles.  相似文献   

2.
In this work the stability parameters of bovine β-lactoglobulin, variant A (BLG-A), with regard to their transition curves induced by dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB) and hexadecyltrimethylammonium bromide (C16TAB) as cationic surfactants, were determined at 298 K. For each transition curve, the conventional method of analysis which assumes a linear concentration dependence of the pre- and post-transition base lines, gave the most realistic values for ΔGD(H2O). The results represent the increase in the denaturating power of surfactants with an increase in hydrocarbon chain length. The value of about 22.27 kJ · mol?1 was obtained for ΔGD(H2O) from transition curves. Subsequently, the retinol binding property of BLG as its functional indicator was investigated in the presence of these surfactants using the spectrofluorimeter titration method. The results represent the substantial enhancement of retinol binding affinity of BLG in the presence of these surfactants.  相似文献   

3.
The thermal treatment of coal causes a development of internal porosity of the resultant char due to the changes in the coal char pores, i.e. the opening of original closed pores, the formation of new pores, and an increase in pore size of existing and newly formed pores. Furthermore, the porosity formed during de-volatilisation causes changes in pore structural characteristics such as: density, pore size distribution, total open pore volume, porosities and average pore diameter. Much research has been conducted in this area, but was mainly focused on fine particle sizes (<1 mm) and vitrinite-rich coals, particularly from the Northern hemisphere. The objective of this study was to obtain an understanding of both the macro- and micro-porosity development within the de-volatilisation zone of a packed bed consisting of lump inertinite-rich coal (75 mm × 6 mm) from the Highveld coalfield in South Africa. This was achieved by generating samples in an air-blown packed bed reactor and conducting proximate, CO2 reactivity, mercury intrusion porosimetry, and BET CO2 surface area analyses on the dissected coal/char/ash samples.From mercury-intrusion porosimetry results obtained for the de-volatilisation reaction zone of the reactor, it was found that although the percentage macro-porosity and average pore diameter increased by 11% and 77% respectively (which confirms pore development), that these developments do not enlarge the surface area, and thus has no significant contribution on the reactivity of the coal/char. On the other hand, the micro-pore surface area, pore volume and pore diameter were all found to increase during de-volatilisation, resulting in an increase in the coal char reactivity. The micro-porosity is thus generally responsible for the largest internal surface area during de-volatilisation, which enables increased reactivity. The CO2 gasification reactivity (at 1000 °C) increased from 3.8 to 4.5 h−1 in the first stage of de-volatilisation, and then decreased to 3.8 h−1 in a slower de-volatilisation regime. This is due to the maximum pore expansion and volatile matter evolution reached at 4.5 h−1, before coalescence and pore shrinkage occur with a further increase in temperature within the slower de-volatilisation region of the reactor. During de-volatilisation there is thus both an increase and decrease in reactivity which might suggest two distinct intermediate zones within the de-volatilisation zone.  相似文献   

4.
It was studied that the influences of the aging, temperature, addition of the polymer and cosolvent on the stability of the vesicles spontaneously formed in the mixtures of zwitterionic surfactant (dodecyl carboxyl betaine, C12BE) and double-tailed anionic surfactant (sodium bis(2-ethylhexyl) sulfosuccinate, AOT) under the inducement of salt by means of freeze-fracture and negative-staining transmission electron microscopy (TEM), dynamic light scattering (DLS) and turbidity measurements. It is found that the vesicles can exist over a long period of aging (about 300 days) at room temperature, show good stability after a heating–cooling cycle of 90–25 °C and a freeze–thaw cycle of −10 to 25 °C, respectively, and may be transformed from spherical vesicles to tubelike structures induced by high temperature 90 °C. Under the effect of (PEO)13(PPO)30(PEO)13 (L64), the transition from unilameller vesicles to large multivesicular vesicles. The presence of ethanol may decrease the stability of vesicles, resulting in the fusion among vesicles to form large vesicles. The excessive amount of ethanol may destroy the vesicles, and the order of ability of destroying vesicles was obtained to be C5H11OH > C4H9OH > C3H7OH > C2H5OH > CH3OH.  相似文献   

5.
We synthesized a S doped Bi/AC catalyst for acetylene hydrochlorination. The addition of H2SO4 changes the structure of the Bi atoms in the catalyst, resulting in the improvement of the specific surface areas and catalytic efficiency of the Bi-based catalyst under reaction conditions.  相似文献   

6.
Phase behavior of normal decane-dodecane(n-C10H22-C12H26,C10-C12) system confined in SBA-15(Santa Barbara Amorphous,pore diameters 3.8,7.8,and 17.2 nm) has been studied by using differential scanning calorimetry.It has been found solid-liquid phase diagram of the C10-C12/SBA-15 system is composed of a straight line(3.8 nm),a curve(7.8 nm) and a loop line (17.2 nm).The growth of the phase diagram clearly shows the size effect on phase behavior of binary alkanes.Phase behavior has been compared among the systems C10H22-C12H26/SBA-15,C12H26-C14H30/SBA-15 and C14H30-C16H34/SBA-15.  相似文献   

7.
The magnetic barium ferrite (BaFe12O19) hollow fibers with a high specific surface area about 22–38 m2 g?1, diameters around 1 μm and a ratio of the hollow diameter to the fiber diameter estimated about 1/2–2/3 have been prepared by the gel-precursor transformation process. The precursor and resulting ferrite hollow fibers were analyzed by thermo-gravimetric and differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The specific surface area was measured by the Brunauer–Emmett–Teller method. The gel formed at pH 5.5 has a good spinnability. A pure barium ferrite phase is formed after calcined at 750 °C for 2 h and fabricated of nanograins about 38 nm with a hexagonal plate-like morphology, which are increased to about 72 nm with the calcination temperature increased up to 1050 °C. The barium ferrite hollow fibers obtained at 750 °C for 2 h have a specific surface area 38.1 m2 g?1 and average pore size 6.5 nm and then the specific surface area and average pore size show a reduction tendency with the calcination temperature increasing from 750 to 1050 °C owing to the particle growth and fiber densification. These barium ferrite hollow fibers exhibit typical hard-magnetic materials characteristics and the formation mechanism for hollow structures is discussed.  相似文献   

8.
《Polyhedron》2007,26(9-11):2273-2275
Nanoparticles of rubidium cobalt hexacyanoferrate were synthesized using the organic ligand poly(vinylpyrrolidone) (PVP). The particles, with composition Rb1.8Co4[Fe(CN)6]3.2 · nH2O determined from CHN combustion analysis and ICP-MS, have an average size of 10 nm ± 2 nm. Similar to bulk samples, the nanoparticles show evidence of ferrimagnetic ordering in DC magnetization below TC  15 K, although the transition is broadened due to the small particle size and its dispersion. Upon illumination with white light at 5 K, the field-cooled DC magnetization of these particles increased 40%.  相似文献   

9.
For the precipitation of calcium carbonate polymorphs in ethanol/water solutions of calcium chloride by the diffusion of the gases produced by sublimation–decomposition of solid ammonium carbonate, polymorph selection and morphology control of the precipitates were demonstrated by the effect of ethanol/water ratio in the mother liquor. The precipitated phases change systematically from gel-like aggregates of hydrated amorphous calcium carbonate in the absolute ethanol solution to well-shaped rhombohedral particles of calcite in the absolute aqueous solution via almost pure phase of vaterite with dendrite structure in 75%-ethanol/25%-aqueous and 50%-ethanol/50%-aqueous solutions. On heating the precipitated sample in flowing dry nitrogen, all the samples transformed to calcite before the thermal decomposition, where the thermal decomposition temperature shifts to higher temperatures with increasing the water content in the mother liquor due to the systematic increase in the particle size of calcite. Accordingly, the present method of controlled precipitation of calcium carbonate polymorphs is also useful to control the particle size and reactivity of calcite produced by heating the precipitates. Selecting vaterite with dendrite structure from the present series of precipitated samples, the structural phase transition to calcite was characterized as the three-dimensional growth of rhombohedral particles of calcite with the enthalpy change ΔH = ? 2.8 ± 0.1 kJ mol?1 and the apparent activation energy Ea = 289.9 ± 5.8 kJ mol?1.  相似文献   

10.
The complexes with long alkyl chains {[Fe(C16-trz)3](ClO4)2}n (1), [Fe(C15-BPT)2(NCS)2] (2), [Fe(C16-salen)Cl] (3), [Fe(C16-salmmen)Cl] (4), K[Fe(C16-salen)(CN)2] (5), K[Fe(C16-salmmen)(CN)2] (6), Na[Fe(C16-salmmen)(CN)2] (7), [Mn(C16-salen)Cl] (8), [Ni(C16-salen)] (9), [Cu(C16-salen)] (10) were synthesized (C16-trz = 4-hexadecyl-1,2,4-triazole, C15-BPT = N-(3,5-di-2-pyridinyl-4H-1,2,4-triazol-4-yl)-hexadecanecarboxamide, C16-salen = N,N-bis[4-(hexadecyloxy)salicylidene]ethylenediamine, C16-salmmen = N,N′-bis[4-(hexadecyloxy)salicylidene]-1,2-diaminopropane). Langmuir–Blodgett (LB) films of compounds 110 were prepared (Scheme 1). The transfers of the molecules from onto the gas–water surface to glass substrate were confirmed by UV–Vis spectra. The second harmonic generation (SHG) were estimated for the LB films formed by the metal complexes. The SHG was observed for the complexes with the long alkyl chains in LB film. The order of the intensity for the SHG related with the number of unpaired d electrons or the d electron configurations.  相似文献   

11.
Recently titania synthesis was reported using various structuration procedures, leading to the production of solid presenting high surface area but exhibiting moderate thermal stability. The study presents the synthesis of TiO2/SiO2 nanocomposites, a solid that can advantageously replace bulk titania samples as catalyst support. The silica host support used for the synthesis of the nanocomposite is a SBA-15 type silica, having a well-defined 2D hexagonal pore structure and a large pore size. The control of the impregnation media is important to obtain dispersed titania crystals into the porosity, the best results have been obtained using an impregnation in an excess of solvent. After calcination at low temperature (400 °C), nanocomposites having titania nanodomains (~2–3 nm) located inside the pores and no external aggregates visible are obtained. This nanocomposite exhibits high specific surface area (close to that of the silica host support, even with a titania loading of 55 wt.%) and a narrow pore size distribution. Surprisingly, the increase in calcination temperature up to 800 °C does not allow to detect the anatase to rutile transition. Even at 800 °C, the hexagonal mesoporous structure of the silica support is maintained, and the anatase crystal domain size is evaluated at ~10 nm, a size close to that of the silica host support porosity (8.4 nm). Comparison of their physical properties with the results presented in literature for bulk samples evidenced that these TiO2/SiO2 solids are promising in term of thermal stability.  相似文献   

12.
Stable, insoluble Langmuir monolayer films composed of Staphylococcus aureus-specific lytic bacteriophage were formed at an air–water interface and characterized. The phage monolayer was very strong, withstanding a surface pressure of ~40 mN/m at 20 °C. The surface pressure–area (ΠA) isotherm possessed a shoulder at ~7 × 104 nm2/phage particle, attributed to a change in phage orientation at the air–water interface from horizontal to vertical capsid-down/tail-up orientation as surface pressure was increased. The ΠA-dependence was accurately described using the Volmer equation of state, assuming horizontal orientation to an air–water interface at low surface pressures with an excluded area per phage particle of 4.6 × 104 nm2. At high pressures phage particles followed the space-filling densely packed disks model with a specific area of 8.5 × 103 nm2/phage particle. Lytic phage monolayers were transferred onto gold-coated silica substrates from the air–water interface at a constant surface pressure of 18 mN/m by Langmuir–Blodgett method, then dried and analyzed by scanning electron microscopy (SEM) and ellipsometry. Phage specific adsorption (Γ) in Langmuir–Blodgett (LB) films measured by SEM was consistent with that calculated independently from Π–A isotherms at the transfer surface pressure of 18 mN/m (Γ = 23 phage particles/μm2). The 50 nm-thickness of phage monolayer measured by ellipsometer agreed well with the horizontal phage average size estimated by SEM. Surface properties of phage Langmuir monolayer compare well with other monolayers formed from nano- and micro-particles at the air–water interface and similar to that of classic amphiphiles 1,2-diphytanoyl-sn-glycero-3-phosphocholine (phospholipid) and stearic acid.  相似文献   

13.
Ordered mesoporous TiO2 materials with an anatase frameworks have been synthesized by using a cationic surfactant cetyltrimethylammonium bromide (C16TMABr) as a structure-directing agent and soluble peroxytitanates as Ti precursor through a self-assembly between the positive charged surfactant S+ and the negatively charged inorganic framework I? (S+I? type). The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and transmission electron microscopy results and nitrogen adsorption–desorption isotherms measurements indicate that the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum Brunauer–Emmett–Teller specific surface area of 284 m2 g?1. This ordered mesoporous anatase TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.  相似文献   

14.
Sodium dodecyl sulfate (SDS) aqueous solutions were used as gelation media in the preparation of polyethersulfone (PES) membranes. The casting solution composition was the same for all the tested membranes. The temperatures of gelation media were 4 and 20°C. The concentration of SDS was changed from 0 to 3.0 g/l at 4°C and 0 to 1.6 g/l at 20°C.The surface tension of the gelation media was measured by drop weight method and the electrical conductivities were also determined. The membranes were characterized by transport parameters obtained from separation experiments and roughness parameters, obtained by the atomic force microscopic (AFM) technique.The molecular weight cut-off (MWCO) values of the studied membranes were found to be between 9 000 and 88 000 Da for membranes gelled at 4°C, and between 28 000 and 85 000 Da for membranes gelled at 20°C. The pore sizes were found to be between 3.04 and 10.73 nm for the membranes gelled at 4°C and between 4.48 and 10.74 nm for membranes gelled at 20°C, respectively. In general, both MWCO and pore size decreased with an increase of SDS concentration in gelation media when the concentration was below critical micelle concentration (CMC) and increased with an increase with SDS concentration when the concentration was above CMC. Images of membrane surfaces, taken by AFM, showed that the size of nodules and depressions decreased with a decrease in pore size. The roughness of membranes increased with an increase in pore size and MWCO.  相似文献   

15.
Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H_2) generation from copious hydrogen sulfide(H_2S). CBN has been synthesized by solid state reaction(SSR) and also using combustion method(CM) at relatively lower temperatures.The as-synthesized materials were characterized using different techniques. X-ray diffraction analysis shows the formation of single phase orthorhombic CBN. Field emission scanning electron microscopy and high resolution-transmission electron microscopy showed the particle size in the range of ~0.5–1 μm for CBN obtained by SSR and 50–70 nm size nanospheres using CM, respectively. Interestingly, nanospheres of size 50–70 nm self assembled with 5–7 nm nanoparticles were observed in case of CBN prepared by CM.The optical properties were studied using UV–visible diffuse reflectance spectroscopy and showed band gap around ~3.0 eV for SSR and 3.1 eV for CM. The slight shift in band gap of CM is due to nanocrystalline nature of material. Considering the band gap in visible region, the photocatalytic activity of CBN for hydrogen production from H_2S has been performed under visible light. CBN prepared by CM has shown utmost hydrogen evolution i.e. 6912 μmol/h/0.5 g which is much higher than CBN prepared using SSR.The enhanced photocatalytic property can be attributed to the smaller particle size, crystalline nature,high surface area and mesoporous structure of CBN prepared by combustion method. The catalyst was found to be stable, active and can be utilized for water splitting.  相似文献   

16.
A vapor permeation experiment for water–ethanol mixtures was carried out using asymmetric Ube polyimide hollow-fiber membranes, which exhibit high selective permeability for water vapor, under the conditions of T=413 K, upstream gas pressure Ph=1.5×105∼2.95×105 Pa and downstream gas pressure Pl=400 Pa. To represent gas separation properties of the Ube polyimide membrane with a high transition temperature (570 K), the contribution of Henry's law part and Langmuir part modes on the diffusion through the membrane is studied on the basis of the dual-mode transport models. The results show that Henry's law penetrant controls the diffusion in the membrane. For the separation of water–ethanol mixtures by permeation through Ube polyimide membranes, the water trapped in microcavities can be assumed to be totally immobilized under the operating conditions applied here.  相似文献   

17.
Thermal decomposition process has been developed to synthesize nickel oxide (NiO) nanoclusters via the reaction between a new precursor, nickel oxalate [Ni(O4C2)(H2O)4] and oleylamine (C18H37N). The combination of triphenylphosphine (C18H15P) and C18H37N were added as surfactants to control the particle size. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible (UV–Vis) spectroscopy. The synthesized NiO nanoclusters have a cubic structure with average size 2–10 nm.  相似文献   

18.
Anatase phase mesoporous TiO2 with I41/amd space group was synthesized via the urea assisted hydrothermal method. The existence of mono phasic TiO2 sub-microspheres of uniform particle size (ca. 400 nm) encompassing an average crystallite size of 14 nm was demonstrated using the XRD, FE-SEM and TEM analysis. Surface area of ca. 116.49 m2/g along with a pore size of 7 nm was calculated using the BET and adsorption isotherm measurements which authenticated the mesoporous nature of the synthesized material. Suitable calcination temperature for the better electrochemical property was established via the optimization process. Accordingly, the mesoporous TiO2 calcined at 400 °C displayed improved cycleability with excellent rate capability ever reported, even at 20 C-rate of discharge. The reason for the superior rate capability is corroborated to the highly mesoporous nature of the TiO2 sub-microspheres that has imparted desirable surface area apposite for enhanced ionic and electronic diffusion.  相似文献   

19.
Measurements of vapour pressure data were conducted using a quasi-static ebulliometer for systems containing water, methanol, ethanol, and a mixture of {water + ethanol} in the presence of an ionic liquid (IL), namely, 1-methylimidazolium chloride ([MIm]Cl), wherein the IL-content ranged from w2 = (0.10 to 0.50). The vapour pressure data of IL-containing binary systems were correlated by the NRTL model with an overall average absolute relative deviation (AARD) of 0.0103, and the resulting binary parameters were used to predict the vapour pressures of a ternary system {water + ethanol + [MIm]Cl} with an AARD less than 0.0077. Further, the isobaric vapour liquid equilibria (VLE) for the ternary system {water + ethanol + IL} with IL-content of w3 = (0.10, 0.30, and 0.50) for [MIm]Cl and x3 = 0.15 for [MIm]Cl, [C4MIm]Cl, and [C6MIm]Cl were predicted at 101.3 kPa, respectively. It is indicated that [MIm]Cl presents the strongest ability to enhance the relative volatility of ethanol to water in the mixture of {water + ethanol} than that of [C4MIm]Cl and [C6MIm]Cl, which is consistent with the cationic sizes and hence the ionic hydration ability. Therefore, distillation separation of the azeotrope of {water + ethanol} can be sufficiently facilitated by the addition of [MIm]Cl at a specified content.  相似文献   

20.
A series of CeO2–ZrO2 with different molybdenum (8–20 wt% MoO3) loaded materials were prepared by homogeneous co-precipitation followed by impregnation method. The prepared materials were tested for their catalytic activity performance in the synthesis of β-enaminones by condensation of various anilines with dimedone under solvent-free conditions in microwave providing excellent yields within short reaction time. An obtained result reveals that, catalytic activity increases with increase in Mo wt% loading. The particle size of prepared materials was estimated using Debye–Scherrer equation. Particle size increases with increase in Mo wt% loading providing nanosized particle ranging from 7.11 to 42.09 nm. The synthesized materials were characterized by means of X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号