首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two hydrazone ligands, (E)-N′-(3-bromo-2-hydroxybenzylidene)-2-methoxybenzohydrazide (HLa) and (E)-N′-(2-hydroxy-3-methylbenzylidene)-2-methoxybenzohydrazide (HLb), were prepared and characterized by IR, UV–vis, and 1H NMR spectroscopy. The corresponding vanadium(V) complexes, 2[VOLaL]·CH3OH (1) and [VOLbL] (2), where L is the monoanionic form of benzohydroxamic acid (HL), were prepared and characterized by IR and UV–vis spectroscopy, and single-crystal X-ray diffraction. Complex 1 crystallizes as the monoclinic space group P21/c, with unit cell dimensions a = 14.4161(16) Å, b = 14.0745(16) Å, c = 24.069(2) Å, β = 96.247(2), V = 4854.5(9) Å3, Z = 4, R1 = 0.0541, wR2 = 0.1423, Goof = 1.032. Complex 2 crystallizes in the orthorhombic space group Pbca, with unit cell dimensions a = 13.5906(6) Å, b = 18.1865(11) Å, c = 18.4068(11) Å, V = 4549.5(4) Å3, Z = 8, R1 = 0.0549, wR2 = 0.1397, Goof = 1.054. X-ray analysis indicates that the complexes are mononuclear octahedral vanadium(V) complexes. The thermal behavior of the complexes was investigated. The hydrazone ligands and their complexes were also evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) and antifungal (Candida albicans and Aspergillus niger) activities using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The two complexes have moderate to good activities against B. subtilis and S. aureus, and 1 has moderate activity against E. coli.  相似文献   

2.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

3.
Bivalent transition metal hydrazone complexes of the composition [Ni(L1)2] (1), [Co(L1)2] (2), [Ni(L2)2] (3) and [Co(L2)2] (4) have been synthesised from the reactions of [MCl2(PPh3)2] (where M = Ni or Co) with hydrazones derived from 2-acetyl pyridine and carboxylic acid hydrazides of benzhydrazide (HL1) or thiophene-2-carboxylic acid hydrazide (HL2), respectively. Structure of the ligands HL1 and HL2 and their corresponding complexes with Ni(II) and Co(II) ions were proposed based on the elemental analysis, infrared and 1H NMR spectral methods. Single crystal X-ray diffraction study of complex 1 revealed a distorted octahedral geometry around the metal ion provided by two units of the ligand. To explore the potential medicinal value of the new complexes, binding interaction of all the complexes with bovine serum albumin (BSA) was studied at normal physiological conditions using fluorescence and UV-Vis spectral techniques. The number of binding sites (n) and binding constant (Ka) were calculated according to the double logarithm regression equation. The results of synchronous fluorescence spectrum showed that binding of metal hydrazones with BSA induced conformational changes in BSA. The in vitro antioxidant and antimicrobial potentials of the new chelates were also carried out.  相似文献   

4.
Prophane sulfonic acid hydrazide (psh: CH(3)CH(2)CH(2)SO(2)NHNH(2)) derivatives as salicylaldehydeprophanesulfonylhydrazone (salpsh), 5-methylsalicylaldehydeprophanesulfonylhydrazone (5-msalpsh), 2-hydroxyacetophenoneprophanesulfonylhydrazone (afpsh), 5-methyl-2-hydroxyacetophenoneprophanesulfonylhydrazone (5-mafpsh) and their Ni(II) complexes have been synthesized. The structure of these compounds has been investigated by using elemental analysis, FTIR, (1)H NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility and conductivity measurements. The complexes were found to have general compositions [NiL2]. Square-planer structures are proposed for the Ni(II) complexes on the basis of magnetic evidence, electronic spectra and TGA data. Bacterial activities of sulfonyl hydrazone compounds were studied against gram-positive bacteria: Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and gram-negative bacteria: Salmonella enteritidis, Escherichia coli by using minimum inhibitory concentrations (MICs) method.  相似文献   

5.
The synthesis and characterization of lanthanide(III) complexes with the Schiff-base hydrazone, o-hydroxyacetophenone-7-chloro-4-quinoline, (HL) are reported. The complexes were characterized by different physicochemical methods: mass spectrometry, 1H NMR, 13C NMR, and IR, UV-visible, molar conductance and magnetic studies. They have the stoichiometry [Ln(L)2(NO3)]·nH2O where Ln = La(III), Pr(III), Nd(II), Sm(III), Eu(III) and n = 1–3. The spectra of the complexes were interpreted by comparison with the spectrum of the free ligand. The Schiff-base ligand and its metal complexes were tested against one stain Gram +ve bacteria (Staphylococcus aureus), Gram ?ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited high antimicrobial activities  相似文献   

6.
Abstract

Reaction of VO(acac)2 with the hydrazone ligands N’-(2-hydroxybenzylidene)-3methylbenzohydrazide (H2L1) and N’-(2-hydroxybenzylidene)-3-methyl-4-nitrobenzohydrazide (H2L2) afforded two oxidovanadium(V) complexes, [VOL1(OMe)(MeOH)] (1) and [VOL2(OEt)(EtOH)] (2), respectively. The complexes have been characterized by elemental analyses, IR, UV-Vis, molar conductivity and X-ray single crystal diffraction techniques. The hydrazone ligands coordinate to the V ions through the phenolate oxygen, imino nitrogen and enolate oxygen atoms. The V ions in both complexes are in octahedral coordination, with the three donor atoms of the hydrazone ligands, and with the other three sites furnished by one methanol or ethanol oxygen atom, one deprotonated methanol or ethanol oxygen atom, and one oxo oxygen. The complexes were assayed for their antibacterial activity on the bacteria B. subtilis, E. coli, P. putida and S. aureus.  相似文献   

7.
Two new oxovanadium(V) complexes, [VOL1(OEt)(EtOH)] (1) and [VOL2(OMe)(MeOH)] (2), were prepared by reaction of [VO(acac)2] (where acac?=?acetylacetonate) with N′-(3-bromo-2-hydroxybenzylidene)-4-methylbenzohydrazide (H2L1) in ethanol and N′-(3-bromo-2-hydroxybenzylidene)-4-methoxybenzohydrazide (H2L2) in methanol, respectively. Crystal and molecular structures of the complexes were determined by elemental analysis, infrared spectra, and single-crystal X-ray diffraction. The V ions have octahedral coordination. Thermal stability and the inhibition of urease of the complexes were studied.  相似文献   

8.
Two new dioxomolybdenum(VI) complexes, [MoO2L1(CH3OH)] (1) and [MoO2L2(H2O)] (2), where L1 and L2 are dianionic form of N′-(2-hydroxy-3-methoxybenzylidene)-4methoxybenzohydrazide and N′-(2-hydroxy-3methoxybenzylidene)-2-hydroxybenzohydrazide, respectively, have been synthesized and structurally characterized by spectroscopic methods and single-crystal X-ray determination. The complexes are mononuclear molybdenum(VI) compounds. Mo in each complex is octahedral. The difference in the substituent groups in the benzohydrazides leads to coordination of different solvent molecules. Crystals of the complexes are stabilized by hydrogen bonds. The complexes are effective catalysts for sulfoxidation.  相似文献   

9.
Oxo- and dioxo-vanadium(V) complexes of hydrazone ONO donor ligands with the formula [VVO(μ2-OCH3)(L1)]2 (1) and [VVO2(L2)]·H2O (2) were synthesized by the reaction of [VO(acac)2] with proton-transfer complexes of benzenetricarboxylic acid/benzoylhydrazide and benzenetricarboxylic acid/isonicotinohydrazide, respectively (H2L1 = monocondensation of benzoylhydrazide and acetylacetone, H2L2 = monocondensation of isonicotinohydrazide and acetylacetone). Dioxo complex of V(V), [VO2(L3)] (3), was synthesized by the reaction of equimolar amounts of VO(acac)2, 2-acetylpyridine and thiosemicarbazide (H2L3 = hydrazone Schiff base of acetylpyridine and thiosemicarbazide and Hacac = acetylacetone). They were characterized by FT-IR, UV-Vis and NMR spectroscopic methods. The crystal structures of 1 and 2 were determined by X-ray analyses. The 1H NMR spectrum of the complex 1 in CDCl3 solution indicated that this dimeric complex is converted appreciably into its respective monomeric form. The catalytic potential of the complexes has been tested for the oxidation of alkene, alkane and aromatic hydrocarbons using H2O2 as the terminal oxidant. Good to excellent conversions have been obtained for the oxidation of most of the hydrocarbons.  相似文献   

10.
Abstract

Some new 3,4,5-trisubstituted 1,2,4-triazole derivatives were synthesized and studied for their antimicrobial activity. The lead compounds were obtained starting from 8-hydroxyquinoline and ethyl 2-chloroacetate. The obtained ester compound (1) first reacted with hydrazine hydrate (2) then with phenyl isothiocyanate (3). Ring closure by KOH led to 3-mercapto-1,2,4-triazole derivative (4). Lastly, it reacted with 2-chloro-N-(substituted (benzo)/thiazole)acetamide derivatives to obtain the final compounds (5a–j). The structural elucidation of the compounds was performed by 1H NMR and 13C NMR spectroscopy and high resolution mass spectrometry techniques and elemental analysis. The synthesized compounds were investigated for their antimicrobial activities against seven bacteria and four fungi. As a result of the activity studies, it was observed that compounds N-(6-nitrobenzothiazol-2-yl)-2-[[4-phenyl-5-((quinolin-8-yloxy)methyl)-4H-1,2,4-triazol-3-yl]thio]acetamide (5a) and N-(6-fluorobenzothiazol-2-yl)-2-[[4-phenyl-5-((quinolin-8-yloxy)methyl)-4H-1,2,4-triazol-3-yl]thio]acetamide (5d) were the most active molecules. Also, the antifungal activity of the compounds was found to be higher than their antibacterial activity although lower than the standard drug’s potential. Additionally, the physicochemical properties of the compounds were calculated which were evaluated to be at a suitable range for oral administration.  相似文献   

11.
Two ligands, bis(benzimidazol-2-ylmethyl) aniline (bba) and bis(N-methyl-benzimidazol-2-ylmethyl) aniline (Mebba), and their transition metal complexes [Zn(bba)(Br)2]·2DMF (1) and [Cu(Mebba)(Br)2]·2DMF (2) have been synthesized and characterized by elemental analyses, molar conductivities, UV–vis spectra, IR spectra, NMR spectroscopy, and X-ray crystallography. The structure around Zn(II) can be described as distorted tetrahedral. Complex 2 can be described as distorted trigonal bipyramidal. Cyclic voltammograms of 2 indicate a quasireversible Cu2+/Cu+ couple. Additionally, the antioxidant activities of the free ligands and their complexes were determined by the superoxide and hydroxyl radical scavenging methods in vitro. Complexes 1 and 2 possess potent hydroxyl radical scavenging activity and better than standard antioxidants such as vitamin C and mannitol. Complex 2 possesses excellent superoxide radical activity.  相似文献   

12.
The synthesis and characterization of Co(II), Ni(II) and Cu(II) complexes of 2-acetyl-2-thiazoline hydrazone (ATH) are reported. Elemental analysis, IR spectroscopy, UV–Vis–NIR diffuse reflectance and magnetic susceptibility measurement, as well as, in the case of copper complex EPR spectroscopy, have been used to characterize the complexes. In addition, the structure of [NiCl2(ATH)2] (2) and [{CuCl(ATH)}2(μ-Cl)2] (3) have been determined by single crystal X-ray diffraction. In all complexes, the ligand ATH bonds to the metal ion through the imine and thiazoline nitrogen atoms. X-ray data indicates that the environment around the nickel atom in 2 may be described as a distorted octahedral geometry with the metallic atom coordinated to two chlorine atoms, two thiazoline nitrogen atoms and two imino nitrogen atoms. With regard to 3, it can be said that its structure consists of dimeric molecules in which copper ions are bridge by two chlorine ligands. The geometry about each copper ion approximates to a distorted square pyramid with each copper atom coordinated to one thiazoline nitrogen atom, one imine nitrogen atom, one terminal chlorine ligand and two bridge chlorine ligands. In compound 3, magnetic susceptibility measurements in the temperature range 2–300 K show an intradimer antiferromagnetic interaction (J = −7.5 cm−1).  相似文献   

13.
The synthesis, crystal structure, thermal analysis and spectroscopic studies of five zinc(II) complexes of formulae [Zn(Memal)(H2O)]n (1) and [Zn2(L)(Memal)2(H2O)2]n (2-5) [H2Memal = methylmalonic acid, and L = 4,4′-bipyridine (4,4′-bpy) (2), 1,2-bis(4-pyridyl)ethylene (bpe) (3), 1,2-bis(4-pyridyl)ethane (bpa) (4) and 4,4′-azobispyridine (azpy) (5)] are presented here. The crystal structure of 1 is a three-dimensional arrangement of zinc(II) cations interconnected by methylmalonate groups adopting the μ32OO’:κO”:κO”’ coordination mode to afford a rare (10,3)-d utp-network. The structures of the compounds 2-5 are also three-dimensional and they consist of corrugated square layers of methylmalonate-bridged zinc(II) ions which are pillared by bis-monodentate 4,4′-bpy (2), bpe (3), bpa (4) and azpy (5) ligands. The Memal ligand in 2-5 adopts the μ3OO′:κO′′:κO′′′ coordination mode. Each zinc(II) ion in 1-5 is six-coordinated with five (1)/four (2-5) methylmalonate-oxygen atoms, a water molecule (1-5) and a nitrogen atom from a L ligand (2-5) building distorted octahedral environments. The rod-like L co-ligands in 2-5 appear as useful tools to control the interlayer metal-metal separation, which covers the range 8.4311(5) Å (2) – 9.644(3) Å (5). The influence of the co-ligand on the fluorescence properties of this series of compounds has been analyzed and discussed by steady-state and time resolved spectroscopy on all five compounds in the solid state.  相似文献   

14.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

15.
Trivalent Cr (III) and divalent of both Mn (II) and Cu (II) complexes containing hydrazone ligands derived from the condensation of picolinohydrazide with O-vanillin were synthesised and characterized by elemental analysis, spectral and magnetic measurements. The suggested octahedral structures were confirmed by applying DFT optimization and conformational studies. The thermal decomposition behaviour of Mn (II) complex is discussed. The evaluation of kinetic parameters (Ea, A, ∆H, ∆S and ∆G) of all thermal degradation stages have been evaluated using Coats-Redfern and Horowitz-Metzger approaches. The band gap results suggested that these complexes are semi-conductors and lie in same range of highly efficient photovoltaic materials. Antibacterial studies showed that higher activity of complexes than of ligands. Assay on the antioxidant activity (DPPH and SOD) of the above complexes revealed the high SOD-activity of Mn (II) complex and high DPPH-activity for ligand.  相似文献   

16.
The mononuclear complexes of Zn(II), Cd(II) and Hg(II), [Zn(phen-dione)Cl2], [Cd(phen-dione)Cl2] and [Hg(phen-dione)Cl2], where phen-dione?=?1,10-phenanthroline-5,6-dione, have been synthesized and characterized by elemental analysis and IR, 1H?NMR and electronic absorption spectroscopies. The ν(C=O) of coordinated phen-dione ligands in these complexes shows that the phen-dione is not coordinated to metal ion from its C=O sites. Electronic spectra of the complexes show two absorption bands for intraligand transitions. These absorption bands show dependence on the dielectric constant of solvents. These complexes exhibit an intense fluorescence band around 545?nm in DMSO when the excitation wavelengths are 200?nm at room temperature.  相似文献   

17.
This work has described the synthesis of novel class (125) of benzofuran based hydrazone. The hybrid scaffolds (125) of benzofuran based hydrazone were evaluated in vitro, for their urease inhibition. All the newly synthesized analogues (125) were found to illustrate moderate to good urease inhibitory profile ranging from 0.20 ± 0.01 to 36.20 ± 0.70 µM. Among the series, compounds 22 (IC50 = 0.20 ± 0.01 µM), 5 (IC50 = 0.90 ± 0.01 µM), 23 (IC50 = 1.10 ± 0.01 µM) and 25 (IC50 = 1.60 ± 0.01 µM) were found to be the many folds more potent than thiourea as standard inhibitor (IC50 = 21.86 ± 0.40 µM). The elevated inhibitory profile of these analogues might be due to presence of dihydroxy and flouro groups at different position of phenyl ring B attached to hydrazone skeleton. These dihydroxy and fluoro groups bearing compounds have shown many folds better inhibitory profile through involvement of oxygen of dihydroxy groups in hydrogen bonding with active site of enzymes. Various types of spectroscopic techniques such as 1H-, 13C- NMR and HREI-MS spectroscopy were used to confirm the structure of all the newly developed compounds. To find SAR, molecular docking studies were performed to understand, the binding mode of potent inhibitors with active site of enzymes and results supported the experimental data.  相似文献   

18.
New complexes having the formulae [L2CoX2] and [LCuCl2], [LCuCl] and [LCu](ClO4)2 where L?=?(2-thiophene)-(5,6-diphenyl-[1,2,4]-triazin-3-yl)hydrazone TDPTH; X?=?Cl, OAc or ClO4 have been synthesized and characterized on the basis of elemental analyses, conductance, magnetic moments and infrared, electronic and ESR spectral data. The IR spectra indicate that TDPTH is a neutral bidentate ligand, coordinating via a triazine-N and azomethine-N in [L2CoX2] and [LCuCl2] with the thiophene-S not coordinated but is tridentate in [LCuCl] and [LCu](ClO4)2 through the same two nitrogen atoms and thiophene-S. The magnetic moment and electronic spectral data suggest a distorted octahedral structure for Co(II) complexes, a dimeric square pyramidal geometry for [LCuCl2] through chloride bridges and a dimeric diamagnetic, four-coordinate copper in [LCu](ClO4)2 through thiophene-S bridges. The X-band ESR spectra of Co(II) complexes, in the solid state, are rhombic with three g values consistent with a high-spin distorted octahedral structure. The X-band ESR spectrum of the powdered sample of both [LCuCl2]·2H2O and [LCu](ClO4)2 at room temperature and at 77?K showed only one broad signal due to?ΔM s?=?±?1 transition and a weak signal due to the forbidden?ΔM s?=?±?2 transition, indicating an antiferromagnetic interaction between copper(II) centers whereas [LCuCl] is ESR silent, indicating a monovalent copper ion in this complex.  相似文献   

19.
Three new coordination complexes of Zn(II) and Mn(II) have been synthesised using two different tridentate N,N,O donor hydrazone ligands, Hpbh and Hacpbh respectively. The complexes [Zn(pbh)2] (1) and [Zn(acpbh)2] (2) have been synthesized by the treatment of ZnSO· 7H2O with Hpbh and Hacpbh hydrazone ligands, respectively. The Mn(II) complex [Mn(acpbh)2] (3) was obtained on reacting Mn(NO3)· 4H2O with the ligand Hacpbh. The ligands Hpbh and Hacpbh were prepared by condensing pyridine-2-carboxaldehyde and 2-acetylpyridine with benzhydrazide respectively. Inspite of varying the carbonyl functionality attached to the pyridine moiety present in the hydrazone ligands in both the Schiff bases, we obtained three mononuclear complexes 1, 2, and 3 which were clearly characterized from single crystal X-ray diffraction studies. Spectroscopic investigations like IR and UV/Vis have been carried out for 1, 2, and 3. Fluorescence studies have been performed for 1 and 2. For 3 cyclic voltammetry, room temperature magnetic study and EPR measurements have been recorded.  相似文献   

20.
A series of small molecules, theophylline acetohydrazide hydrazone derivatives were obtained via condensation of theophylline-7-acetohydrazide with different aromatic/heterocyclic aldehydes. The compounds were synthesized and characterized by using conventional methods. Further, the compounds and standard drugs were evaluated against Mycobacterium tuberculosis H37Rv strain, the activity obtained was varying depending on the functional group attached to theophylline acetohydrazide hydrazone compounds. Among these, Br-substituted compounds showed more potent against M. tuberculosis with MIC 3.6–4 μM and better than the reference drugs used. The molecular docking studies have shown the possible binding modes of the compounds with protein (PDB ID: 4RHX); the compound 4h has shown highest glide score and binding energy. For all compounds, ADME properties were predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号