首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.  相似文献   

2.
Novel urchin-like core/shell composite hollow spheres were fabricated by assembly of nickel nanocones on the surface of hollow glass spheres; the effects of some reaction parameters on the morphology of the shell layers and the room temperature magnetic properties of the products were investigated.  相似文献   

3.
以溶于十八烯的Se作为Se前驱体,在无膦条件下制备得到了具有较高量子产率的Mn:ZnSe纳米晶.为了进一步提高纳米晶的稳定性和发光强度,运用外延生长的方法进行ZnS壳层包覆并得到了具有核-壳结构的Mn:ZnSe/ZnS纳米晶.X射线衍射、透射电子显微镜及吸收和荧光光谱测试结果表明,该方法合成的Mn:ZnSe纳米晶以及核-壳结构Mn:ZnSe/ZnS纳米晶均为闪锌矿结构,具有良好的单分散性,包覆ZnS外壳层后量子产率可达到60%以上.此外,对ZnS壳层厚度和Mn2+的掺杂量对Mn:ZnSe/ZnS纳米晶发光强度的影响及发光机制也进行了初步讨论.  相似文献   

4.
We have developed a template-free hydrothermal method of constructing rare earth phosphate hollow spheres using H(6)P(4)O(13) as the PO(4) (3-) source. The mechanism of hollow spheres formation was proposed on the basis of Ostwald ripening. The resulting hollow spheres, especially with the aid of doping of other lanthanide cations, exhibit emission spanning the whole UV-visible wavelength range.  相似文献   

5.
6.
Hollow SnO(2) spheres with smooth surface have been fabricated by a low temperature template-free solution phase route via self-assembly of small nanocrystalline particles. These hollow spheres have a very thin shell thickness of about 10 nm and are built from SnO(2) nanocrystals of an average size of 5.3 nm. The evacuation behavior of inside-out Ostwald ripening can be used to explain the formation of hollow spheres according to results of time-dependent reactions. The cathodoluminescence spectrum indicates a blue shift of the band gap emission peak of SnO(2), originating from quantum confinement effect due to the nanoscale size of SnO(2) particles. The as-prepared SnO(2) hollow spheres were also found to exhibit excellent performance in wastewater treatment.  相似文献   

7.
8.
Magnetic Fe3O4 hollow spheres were successfully synthesized with a water in oil in water (W/O/W) emulsion. During the facile procedure, no high pressure, high temperature, or other complex reaction conditions were required. Transmission electric microscope (TEM) images showed that all the hollow structural products have a good spherical morphology with an average diameter of 160 nm. The average size and the size distribution were further determined with dynamic light scattering (DLS), which reveals that the hollow nanospheres have a narrow size distribution. The average size from DLS was about 180 nm, which approximated that from TEM data. X-ray diffraction (XRD) demonstrates that the products were all Fe3O4 phase without any impurity. By increasing or decreasing the dosage of precipitate and precipitant sources, we controlled the shell thickness successfully in the tens of nanometers range. The formation mechanism of those hollow magnetic nanospheres was discussed by using the "reverse micelle transport" mechanism.  相似文献   

9.
We report a two-step synthesis of highly luminescent CdS/ZnSe core/shell nanocrystals (emission quantum yields up to 50%) that can produce efficient spatial separation of electrons and holes between the core and the shell (type-II localization regime). Our synthesis involves fabrication of cubic-singony CdS core particles that are subsequently overcoated with a layer of ZnSe in the presence of surfactant-ligands in a noncoordinating solvent. Studies of different growth regime of the ZnSe shell indicate that one approach to obtaining high emission efficiencies is through alloying the CdS/ZnSe interface with CdSe, which leads to the formation of an intermediate ZnCdSe layer with a graded composition. We perform theoretical modeling of these core/shell nanocrystals using effective mass approximation and applying first-order perturbation theory for treating both direct electron-hole coupling and the core/shell interface-polarization effects. Using this model we determine the range of geometrical parameters of the core/shell structures that result in a type-II localization regime. We further applied this model to evaluate the degree of electron-hole spatial separation (quantified in terms of the electron-hole overlap integral) based on measured emission wavelengths. We also discuss the potential applicability of these nanocrystals in lasing technologies and specifically the possibility of single-exciton optical gain in type-II nanostructures.  相似文献   

10.
The interband and intraband spectra of colloidal II-VI CdS and CdSe quantum dot cores and CdSZnSe, CdSCdSe, CdSeCdS, and CdSeZnSe core/shell systems are reported. Infrared absorption peaks between 0.5 and 0.2 eV are observed. The slope of the intraband energy versus the first interband absorption feature is characteristic of the relative band alignments of the materials constituting the core and the shell and it is analyzed within an effective mass model. The analysis provides a new estimate of the band gap of zinc blende CdSe as well as the band offsets in zinc blende and wurtzite CdSe, CdS, and ZnSe.  相似文献   

11.
采用高温有机相包覆技术制备了CdSe/ZnS核壳结构量子点材料,考察了包覆量对量子点材料的光学性能的影响,研究了含脂肪链和芳香基的双硫醇分子1,4-苯二甲硫醇和1,8-辛二硫醇对于具有核-壳结构的CdSe/ZnS量子点材料的修饰作用,考察了修饰作用对于量子点的量子效率和荧光强度等光学性能的影响.实验结果表明:随着硫化锌包覆量的增加,量子点的量子效率及其荧光发射强度明显提高;硫醇的修饰能显著增强量子点的发光强度,随着硫醇浓度的增加,其发光性能增强,但是达到一定程度后,光学性能基本不随硫醇浓度的变化而变化.根据固体核磁共振等实验结果推测:硫醇分子可能部分替代了量子点体系中的正三辛基氧膦配体,稳定了量子点体系,对量子点起修饰保护作用,从而提高了量子点的光学性能.  相似文献   

12.
Spherical PbSe hollow nanostructure assemblies (HNSAs) were synthesized by a simple one‐pot solid/liquid‐phase reaction in which solid KPbI3 ? 2 H2O and SeO2 are heated in oleic acid/dodecylamine/1‐octadecene at 250 °C for 30 min. XRD analysis shows that the obtained product is cubic‐phase PbSe and well crystallized. FESEM and TEM images reveal that the obtained spherical PbSe assemblies are made up of small, irregular, and fused hollow nanostructure building blocks. On the basis of temperature‐ and time‐dependent investigations as well as control experiments, molten‐salt corrosion of solid PbSe nanocrystal aggregates formed in situ during the high‐temperature ripening stage is suggested to explain the formation of such novel assemblies. Moreover, when the reaction temperature is further increased to 280 or 320 °C with other conditions unchanged, cubic and orthorhombic mixed‐phase PbSe HNSAs is generated. The obtained PbSe HNSAs exhibit excellent electrogenerated chemiluminescence (ECL) performance. Two strong and stable emission peaks at about ?1.4 and +1.5 V (vs. Ag/AgCl) are observed. In particular, the ECL intensity is influenced by the crystal phase of PbSe.  相似文献   

13.
A reverse cation-exchange approach for the synthesis of hollow PbSe nanospheres is successfully established. This route involves a new strategy of a stepwise, in-situ template-based evolution from spherical amorphous Se colloids to Se/Ag(2)Se core/shell colloids, then to hollow PbSe nanospheres. Se colloids are prepared as the initial product by utilizing the chelation of ethylenediamine to bulk Se. They are converted into Se/Ag(2)Se core/shell colloids through the reaction with Ag(+) in ethylene glycol. During the conversion from Ag(2)Se shell to PbSe shell, a small amount of tributylphosphine is crucial as the capping agent. The characterization results, including XRD, SEM, TEM, HRTEM, and EDX, reveal that hollow PbSe nanospheres with polycrystalline and cubic structure are prepared. The corresponding optical band gap is calculated to be 0.56 eV. This conformation is potentially beneficial to the improvement concerning the applications of PbSe nanostructures.  相似文献   

14.
A water/ethylene glycol (H2O/EG) system has been designed to synthesize lithium niobate (LiNbO3) powders by a mild, one-step quasireverse emulsion method. A morphology transformation from initial nuclei to flowerlike structures and then to hollow spheres is confirmed by the time-dependent experiment. The as-obtained LiNbO3 hollow spheres are formed via Ostwald ripening under solvothermal conditions, and their absorption edge in UV/vis diffuse reflectance spectra can be effectively tuned by the current morphology control strategies. This facile, efficient, and economic work provides a new route to simply and mildly synthesize hollow LiNbO3 particles and is a good initiation in the morphology control study of LiNbO3 powders.  相似文献   

15.
Ge JP  Xu S  Zhuang J  Wang X  Peng Q  Li YD 《Inorganic chemistry》2006,45(13):4922-4927
Uniform ZnxCd1-xSe nanocrystals have been prepared at the artificially designed water-oil interface using Na2SeO3, Cd(NO3)2, and Zn(NO3)2 as precursors. The chemical composition and band gap of the ZnxCd1-xSe nanocrystals can be adjusted via different combinations of source material. The coating of a SiO2 shell could transform the hydrophobic particles into hydrophilic particles. An advantage of this method is that a water phase could be added to the oleic acid (OLEA) synthesis system, which could be extended to make the synthesis of various nanocrystals more simple and flexible.  相似文献   

16.
Core exchangeable polymer-silica hybrid capsules with solvent-selective permeability were fabricated, in which the internal silica layer, formed from pre-included precursors, has the role of a framework to prevent irreversible deformation of the hollow capsules.  相似文献   

17.
Du J  Fu L  Liu Z  Han B  Li Z  Liu Y  Sun Z  Zhu D 《The journal of physical chemistry. B》2005,109(26):12772-12776
A simple method to decorate the multiwalled carbon nanotubes (MWCNTs) with ZnS nanospheres has been developed. The method involves ultrasonic pretreatment and heat treatments of MWCNTs, zinc chloride, and thiourea in ethanol. The heterostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Comparative experiments show that both ultrasonic treatment and heat treatment are necessary for synthesizing the MWCNTs/ZnS heterostructures. Moreover, a photoluminescence spectrum shows that the MWCNTs/ZnS heterostructures feature a broad blue emission at about 430 nm, indicating that there exists significant ground-state interaction between ZnS nanospheres and MWCNTs. Meanwhile, the current-voltage characteristic of the MWCNTs/ZnS exhibits clear rectifying behavior, revealing charge transfer between MWCNTs and ZnS nanospheres.  相似文献   

18.
Uniform and stable core-shell microspheres composed of a poly(methyl methacrylate) (PMMA) core and a thin metallic shell of nickel-phosphorus, cobalt-phosphorus, or mixed metal alloys (CoNiP, NiFeP, CoFeP) were prepared by dispersion polymerization of methyl methacrylate followed by electroless plating. The presence of the metallic shell around the particles was confirmed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy. Transmission electron microscopy images of the cross-section of individual particles show that the thickness of the metal/alloy can be precisely tuned by adjusting the immersion time of the microspheres in the electroless bath. Depending on the deposited metallic material, various magnetic properties, from paramagnetic to ferromagnetic, are achieved. Finally, uniform hollow metallic spheres composed of nickel, cobalt, or nickel-cobalt alloy are obtained by dissolving the polymer core.  相似文献   

19.
Nanostructured silicon hollow spheres with a thin shell have been synthesized by magnesium reduction of silica spheres, which possess a high BET surface area and are electrochemically active in capacitive energy storage with a maximum specific capacitance of 193 F g(-1) in the neutral Na(2)SO(4) aqueous solution.  相似文献   

20.
Static and time-dependent density functional calculations, geometrically optimized and including all electrons, are described for silicon nanocrystals as large as Si(87)H(76), which contains 163 atoms. We explore and predict the effect that different sp(3) passivation schemes-F or H termination, thin oxide shell, or alkane termination-have on the HOMO and LUMO, on the optical spectra, and on electron transfer properties. Electronegativity comparisons are a useful guide in understanding the observed deviation from the simple quantum size effect model. Nanocrystals containing Al or P impurity atoms, either on the surface or in the interior, are explored to understand electrical doping in strongly quantum-confined nanocrystals. Surface dangling bonds are found to participate in internal charge transfer with P atom dopant electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号