首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selective in situ synthesis of trans and cis(CH3CN)-[Ru(bpy)(CO)2 (CH3CN)2]2+ isomers from the same [Ru(CO)2 (CH3CN)3]22+ dimer precursor but using either an electrochemical-chemical or chemical-electrochemical process is described.  相似文献   

2.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

3.
B. Machura  M. Wolff  J. Kusz  R. Kruszynski   《Polyhedron》2009,28(14):2949-2964
The paper presents a combined experimental and computational study of mono- and disubstituted Re(V) oxocomplexes obtained in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2-hydroxyphenyl)-1H-benzimidazole (Hhpb). From the reactions of [ReOX3(PPh3)2] with Hhpb in molar ratio 1:1 cis and trans stereoisomers of [ReOX2(hpb)(PPh3)] were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with Hhpb to give only cis-halide isomers. The [ReOX2(hpb)(EPh3)] and [ReO(OMe)(hpb)2]·MeCN complexes have been characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The DFT and TDDFT calculations have been carried out for the trans-[ReOBr2(hpb)(PPh3)], cis-[ReOBr2(hpb)(AsPh3)] and [ReO(OMe)(hpb)2], and their UV–Vis spectra have been discussed on this basis.  相似文献   

4.
Trans-[RuCl2(CO)2(PEt3)2] reacts with two equivalents of a series of 1,1-dithiolate ligands to form the bis(dithiolate) complexes, cis-[Ru(CO)(PEt3)(S2X)2] (X = CNMe2, CNEt2, COEt, P(OEt)2, PPh2). Two intermediates have been isolated; trans-[Ru(PEt3)2Cl(CO){S2P(OEt)2}] and trans-[Ru(PEt3)2(CO)(η1-S2COEt)(η2-S2COEt)], allowing a simple reaction scheme to be postulated involving three steps; (i) initial replacement of cis carbonyl and chloride ligands, (ii) substitution of the second chloride, (iii) loss of a phosphine. Thermolysis of cis-[Ru(CO)(PEt3)(S2CNMe2)2] with Ru3(CO)12 in xylene affords trinuclear [Ru33-S)2(PEt3)(CO)8] as a result of dithiocarbamate degradation. Crystal structures of cis-[Ru(CO)(PEt3)(S2X)2] (X = NMe2, COEt), trans-[Ru(PEt3)2Cl(CO){S2P(OEt)2}], trans-[Ru(PEt3)2(CO)(η1-S2COEt)(η2-S2COEt)] and [Ru33-S)2(PEt3)(CO)8] are reported.  相似文献   

5.
Two isomers of heteroleptic bis(bidentate) ruthenium(II) complexes with dimethyl sulfoxide (dmso) and chloride ligands, trans(Cl,Nbpy)- and trans(Cl,NHdpa)-[Ru(bpy)Cl(dmso-S)(Hdpa)]+ (bpy: 2,2′-bipyridine; Hdpa: di-2-pyridylamine), are synthesized. This is the first report on the selective synthesis of a pair of isomers of cis-[Ru(L)(L′)XY]n+ (L≠L′: bidentate ligands; X≠Y: monodentate ligands). The structures of the ruthenium(II) complexes are clarified by means of X-ray crystallography, and the signals in the 1H NMR spectra are assigned based on 1H–1H COSY spectra. The colors of the two isomers are clearly different in both the solid state and solution: the trans(Cl,Nbpy) isomer has a deep red color, whereas the trans(Cl,NHdpa) isomer is yellow. Although both complexes have intense absorption bands at λ≈440–450 nm, only the trans(Cl,Nbpy) isomer has a shoulder band at λ≈550 nm. DFT calculations indicate that the LUMOs of both isomers are the π* orbitals in the bpy ligand, and that the LUMO level of the trans(Cl,Nbpy) isomer is lower than that of the trans(Cl,NHdpa) isomer due to the trans effect of the Cl ligand; thus resulting in the appearance of the shoulder band. The HOMO levels are almost the same in both isomers. The energy levels are experimentally supported by cyclic voltammograms, in which these isomers have different reduction potentials and similar oxidation potentials.  相似文献   

6.
Synthetic procedures are described that allow access to the new complexes cis-[Mo2O5(apc)2], cis-[WO2(apc)2], trans-[UO2(apc)2], [Ru(apc)2(H2O)2], [Ru(PPh3)2(apc)2], [Rh(apc)3], [Rh(PPh3)2(apc)2]ClO4, [M(apc)2], [M(PPh3)2(apc)]Cl, [M(bpy)(apc)]Cl (M(II) = Pd, Pt), [Pd(bpy)(apc)Cl], [Ag(apc)(H2O)2] and [Ir(bpy)(Hapc)2]Cl3, where Hapc, is 3-aminopyrazine-2-carboxylic acid. These complexes were characterized by physico-chemical and spectroscopic techniques. Both Hapc and several of its complexes display significant anticancer activity against Ehrlich ascites tumour cells (EAC) in albino mice.  相似文献   

7.
A high-yield synthesis of trans-RuCl2(CS)(H2O)(PPh3)2 from RuCl2(PPh3)3 and CS2 is described. The coordinated water molecule is labile, and introduction of CNR (R  p-toyl or p-chlorophenyl) leads to yellow trans-RuCl2(CS)(CNR)(PPh3)2, which isomerises thermally to colourless cis-RuCl2(CS)(CNR)(PPh3)2. Reaction of AgClO4 with cis-RuCl2(CS)(CNR)(PPh3)2 gives [RuCl(CS)(CNR)(H2O)(PPh3)2]+, from which [RuCl(CS)(CO)(CNR)(PPh3)2]+ and [RuCl(CS)(CNR)2(PPh3)2]+ are derived. Reaction of trans-RuCl2(CS)(H2O)(PPh3)2 with sodium formate gives Ru(η2-O2CH)Cl(CS)(PPh3)2, which undergoes decarboxylation in the presence of (PPh3) to give RuHCl(CS)(PPh3)3. Ru(η2-O2CH)H(CS)(PPh3)2 and Ru(η2-O2CMe)-H(CS)(PPh3)2 are also described.  相似文献   

8.
Reaction of the complexes Ru(CO)2Cl2L [L = 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen)] with trifluoromethanesulphonic acid under carefully controlled conditions yields Ru[cis-(CO)2] [cis-(O3SCF3)2] (bidentate complexes. From reactions of the trifluoromethanesulphonates with the appropriate bidentate ligands, the new complexes [cis-Ru(CO)2-L(L′)]2+ (L as above; L′ = 4,4′-dimethyl-2,2′-bipyridyl or 4,4′-diisopropyl-2,2′-bipyridyl) as well as the known [cis-Ru(CO)2L2]2+ and [cis-Ru(CO)2bpy(phen)]2+ have been prepared.  相似文献   

9.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

10.
Reaction of 1-phenyl 5-(aminophenyl) 9-(2-pyridyl) benzimidazole derivatives (2) with cis-Ru(bpy)2Cl2 in MeCN results in the formation of N-(aryl) imidazo[1,5a] pyridine derivatives (4) and cis-[Ru(bpy)2(MeCN)2]2+ (5). Crystal structures of N-(4-chlorophenyl) imidazo[1,5a] pyridine (4b) and cis-[Ru(bpy)2(MeCN)2](ClO4)2 (5) are also reported.  相似文献   

11.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand.  相似文献   

12.
Reactions of the dichloroboryl complex of osmium, Os(BCl2)Cl(CO)(PPh3)2, with water, alcohols, and amines: Crystal structures of Os[B(OH)2]Cl(CO)(PPh3)2, Os[B(OEt)2]Cl(CO)(PPh3)2, and

Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and water replaces both chloride substituents on the boryl ligand, without cleavage of the Os---B bond, giving yellow Os[B(OH)2]Cl(CO)(PPh3)2 (1). Compound 1 can be regarded as an example of a ‘metalla–boronic acid’ (LnM---B(OH)2) and in the solid state, X-ray crystal structure determination reveals that molecules of 1 are tetragonal pyramidal in geometry (Os---B, 2.056(3) Å) and are arranged in pairs, as hydrogen-bonded dimers. This same arrangement is found in the crystalline state for simple boronic acids. Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and methanol and ethanol produces yellow Os[B(OMe)2]Cl(CO)(PPh3)2 (2a) and yellow Os[B(OEt)2]Cl(CO)(PPh3)2 (2b), respectively. The crystal structure of 2b reveals a tetragonal pyramidal geometry with the diethoxyboryl ligand in the apical site and with an Os---B bond distance of 2.081(5) Å. Reaction between Os(BCl2)Cl(CO)(PPh3)2, and N,N′-dimethyl-o-phenylenediamine and N,N′-dimethyl-ethylenediamine produces yellow

(5) and yellow

(6), respectively. Compounds 1, 2a, 2b, 5, and 6 all react with carbon monoxide to give the colourless, six-coordinate complexes Os[B(OH)2]Cl(CO)2(PPh3)2 (3), Os[B(OMe)2]Cl(CO)2(PPh3)2 (4a), Os[B(OEt)2]Cl(CO)2(PPh3)2 (4b),

(7), and

(8), respectively, but in the case of 6 only, this CO uptake is easily reversible. The crystal structure of 5 is also reported.  相似文献   

13.
We have synthesised (Et4N)[ReBr2(NCCH3)2(CO)2] 1 in two steps from [ReBr3(CO)3]2−. Complex 1 is water and air stable and the two Br ligands are easily exchanged for coordinating solvent molecules such as water. The reactivity of 1 with several ligands such as imidazole (imz) and 2-picolinic acid (2-pic) are easily possible with substitution exclusively occurring in trans-position to the carbonyl groups. The resulting complexes [Re(imz)2(NCCH3)2(CO)2]+ and [Re(2-pic)(NCCH3)2(CO)2] have been isolated and structurally characterised. The two acetonitrile ligands are strongly bound and are not substituted under any conditions. Complex 1 represents therefore the new moiety “trans,cis-[Re(NCCH3)2(CO)2]+” which can be considered as a further building block in organometallic chemistry.  相似文献   

14.
Mononuclear and dinuclear Ru(II) complexes cis-[Ru(κ2-dppm)(bpy)Cl2] (1), cis-[Ru(κ2-dppe)(bpy)Cl2] (2) and [Ru2(bpy)2(μ-dpam)2(μ-Cl)2](Cl)2 ([3](Cl)2) were prepared from the reactions between cis(Cl), cis(S)-[Ru(bpy)(dmso-S)2Cl2] and diphosphine/diarsine ligands (bpy = 2,2′-bipyridine; dppm = 1,1-bis(diphenylphosphino)methane; dppe = 1,2-bis(diphenylphosphino)ethane; dpam = 1,1-bis(diphenylarsino)methane). While methoxy-substituted ruthenafuran [Ru(bpy)(κ2-dppe)(C^O)]+ ([7]+; C^O = anionic bidentate [C(OMe)CHC(Ph)O] chelate) was obtained as the only product in the reaction between 2 and phenyl ynone HC≡C(C=O)Ph in MeOH, replacing 2 with 1 led to the formation of both methoxy-substituted ruthenafuran [Ru(bpy)(κ2-dppm)(C^O)]+ ([4]+) and phosphonium-ring-fused bicyclic ruthenafuran [Ru(bpy)(P^C^O)Cl]+ ([5]+; P^C^O = neutral tridentate [(Ph)2PCH2P(Ph)2CCHC(Ph)O] chelate). All of these aforementioned metallafuran complexes were derived from Ru(II)–vinylidene intermediates. The potential applications of these metallafuran complexes as anticancer agents were evaluated by in vitro cytotoxicity studies against cervical carcinoma (HeLa) cancer cell line. All the ruthenafuran complexes were found to be one order of magnitude more cytotoxic than cisplatin, which is one of the metal-based anticancer agents being widely used currently.  相似文献   

15.
Photochemical exchange of carbonyls was used to produce new ruthenium dialkylcyanamide and nitrile compounds [RuCl2(bpy)(CO)(NCNMe2)] (2), [RuCl2(bpy)(CO)(NCNEt2)] (3), and [RuCl2(bpy)(CO)(NCEt)] (4) from trans(Cl)-[RuCl2(bpy)(CO)2] (1). The reaction energetics, steric effects and electronic effects induced by the dialkylcyanamide and nitrile ligands were studied using computational DFT methods and cyclic voltammetry. In all cases the photochemical exchange reaction favors rearrangement of the ligands and formation of the trans(Cl,L)-[RuCl2(bpy)(CO)L] (L = NCNMe2, NCNEt2 or NCEt) isomer as the main products. The oxidation potential of the complexes decreases with the increase of the HOMO energy and of net electron-donor character of the ligands, the dialkylcyanamides (whose electrochemical Lever EL ligand parameter has been estimated) behaving as stronger net electron donors than propiononitrile or CO. The electronic effect of the dialkylcyanamide and nitrile ligands is also reflected into the HOMO-LUMO energy difference, which is slightly reduced compared to the original dicarbonyl compound 1. The computational results show that the geometry of the isomer plays also an important role in the determination of orbital energies.  相似文献   

16.
The reactions of [Ru(H)(Cl)(CO)(PPh3)3] with 3,5-di-tert-butyl-o-benzoquinone (dbq) and 3,4,5,6-tetrachloro-o-benzoquinone (tcq) have afforded the corresponding semiquinone complexes [RuII(dbsq)(Cl)(CO)(PPh3)2] and [RuII(tcsq)(Cl)(CO)(PPh3)2], respectively. The reaction of [Ru(H)2(CO)(PPh3)3] with tcq has furnished [RuII(tcsq)(H)(CO)(PPh3)2]. Structure determination of [Ru(dbsq)(Cl)(CO)(PPh3)2] has revealed that it is a model semiquinonoid chelate with two equal C---O lengths ( 1.291(6) and 1.296(6) Å). The complexes are one-electron paramagnetic (1.85μB) and their EPR spectra in fluid media display a triplet structure (g2.00) due to superhyperfine coupling with two trans-31P atoms (Aiso17 G). The stretching frequency of the CO ligand increases by 20 cm−1 in going from [Ru(dbsq)(Cl)(CO)(PPh3)2] to [Ru(tcsq)(Cl)(CO)(PPh3)2] consistent with electron withdrawal by chloro substituents. For the same reason the E1/2 values of the cyclic voltammetric quinone/semiquinone and semiquinone/catechol couples undergo a shift of 500 mV to higher potentials between [Ru(dbsq)(Cl)(CO)(PPh3)2] and [Ru(tcsq)(Cl)(CO)(PPh3)2].  相似文献   

17.
Synthesis procedures are described for the new stable mixed ligand complexes, [Pd(Hpa)(pa)]Cl, [Pd(pa)(H2O)2]Cl, [Pd(pa)(en)]Cl, [Pd(pa)(bpy)]Cl, [Pd(pa)(phen)Cl], [Pd(pa)(pyq)Cl], cis-[MoO2(pa)2], [Ag(pa)(bpy)], [Ag(pa)(pyq)], trans-[UO2(pa)(pyq)](BPh4) and [ReO(PPh3)(pa)2]Cl (Hpa = 2-piperidine-carboxylic acid, en = ethylene diamine, bpy = 2,2′-bipyridyl, phen = 1,10-phenanthroline, pyq = 2(2′-pyridyl)quinoxaline). Their elemental analyses, conductance, thermal measurements, Raman, IR, electronic, 1H-n.m.r. and mass spectra have been measured and discussed. 2-Piperidine-carboxylic acid and its palladium complexes have been tested as growth inhibitors against Ehrlich ascites tumour cells (EAC) in Swiss albino mice.  相似文献   

18.
The reaction of [Ru(bpy)2Cl2] and Na2[Fe(CN)4(dmso)2] complexes with isonicotinic acid immobilized on silica spheres (Si-ATPS-ISN) followed by a NO bubbling produced Si-ATPS-ISN-[Ru(bpy)2(NO)] (system I) and Si-ATPS-ISN-[Fe(CN)4(NO)] (system II). The characterization of these systems was carried out by UV–Vis, FTIR spectroscopy and electrochemical techniques. As judged by the FTIR data, the nitric oxide ligand has an NO+ character in both systems (ν(NO+): 1938 cm−1). The NO release, which was monitored by means of FTIR, electrochemistry, and NO sensor electrode, was observed for both systems upon white light irradiation and chemical reduction by cysteine. These results indicated that the system (II) presents a higher potential for controlled NO release. The characterization (FTIR and UV–Vis) of the systems after the NO release suggested the formation of the aqua systems ATPS-ISN-[Ru(bpy)2(OH2)] and ATPS-ISN-[Ru(bpy)2(OH2)].  相似文献   

19.
Polypyridyl ruthenium(II) dicarbonyl complexes with an N,O- and/or N,N-donor ligand, [Ru(pic)(CO)2Cl2] (1), [Ru(bpy)(pic)(CO)2]+ (2), [Ru(pic)2(CO)2] (3), and [Ru(bpy)2(CO)2]2+ (4) (pic=2-pyridylcarboxylato, bpy=2,2′-bipyridine) were prepared for comparison of the electron donor ability of these ligands to the ruthenium center. A carbonyl group of [Ru(L1)(L2)(CO)2]n (L1, L2=bpy, pic) successively reacted with one and two equivalents of OH to form [Ru(L1)(L2)(CO)(C(O)OH)]n−1 and [Ru(L1)(L2)(CO)(CO2)]n−2. These three complexes exist as equilbrium mixtures in aqueous solutions and the equilibrium constants were determined potentiometrically. Electrochemical reduction of 2 in CO2-saturated CH3CN–H2O at −1.5 V selectively produced CO.  相似文献   

20.
The Ru-Ru single bond in [Ru2(CO)4(MeCN)6][BF4]2 remains intact in the reaction with 2-i-propyl-1,8-naphthyridine (iPrNP) and the isolated product is the cis-[Ru2(iPrNP)2(CO)4(OTf)2] (1) obtained via crystallization in the presence of [n-Bu4N][OTf]. The 2-t-butyl-1,8-naphthyridine (tBuNP), on the contrary, leads to the oxidative cleavage of the Ru-Ru single bond resulting in the trans-[Ru(tBuNP)2(MeCN)2][BF4]2[NC(Me)C(Me)N] (2). The anti-[NC(Me)C(Me)N]2− is the product of the two-electron reductive coupling of two acetonitrile molecules. The phenoxo appendage in 2-(2-hydroxyphenyl)-1,8-naphthyridine (hpNP) brings the identical effect of the scission of the Ru-Ru bond but the process is non-oxidative and the product obtained is the cis-[Ru(hpNP)2(CO)2][BF4] (3). The bis-(diphenylphosphino)methane (dppm) in dichloromethane oxidatively cleave the Ru-Ru bond leading to chloro bridged [Ru(μ-Cl)(dppm)(CO)(MeCN)]2[BF4]2 (4). All the complexes have been characterized by the spectroscopic and electrochemical measurements and their structures have been established by X-ray diffraction study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号