首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive Monte Carlo simulations were performed in order to determine the precise values of the critical thresholds for site (p hcp c, S =0.199 255 5±0.000 001 0) and bond (p hcp c, B =0.120 164 0±0.000 001 0) percolation on the hcp lattice to compare with previous precise measurements on the fcc lattice. Also, exact enumeration of the hcp and fcc lattices was performed and yielded generating functions and series for the zeroth, first, and second moments of both lattices. When these series and the values of p c are compared to those for the fcc lattice, it is apparent that the site percolation thresholds are different; however, the bond percolation thresholds are equal within error bars, and the series only differ slightly in the higher order terms, suggesting the actual values are very close to each other, if not identical.  相似文献   

2.
万宝惠  张鹏  张晶  狄增如  樊瑛 《物理学报》2012,61(16):166402-166402
靴襻渗流最早应用于统计物理学中研究磁铁因非磁性杂质导致磁有序的降低并最终消失的现象. 随着复杂网络研究的深入, 许多学者展开网络上的靴襻渗流研究. 在自然界中, 许多系统自然呈现出二分结构, 二分网络是复杂网络中的一种重要的网络模式. 本文通过建立动力学方程和计算机仿真模拟的方法研究二分网上的靴襻渗流, 关注的参数是二分网中两类节点初始的活跃比例和活跃阈值, 分别用f1, f2Ω1, Ω2表示, 得到二分网两类节点终态活跃比例随初始活跃比例的变化会发生相变等结论. 同时 验证了动力学方程与仿真模拟的一致性.  相似文献   

3.
A new site percolation model, directed spiral percolation (DSP), under both directional and rotational (spiral) constraints is studied numerically on the square lattice. The critical percolation threshold p c ≈ 0.655 is found between the directed and spiral percolation thresholds. Infinite percolation clusters are fractals of dimension d f ≈ 1.733. The clusters generated are anisotropic. Due to the rotational constraint, the cluster growth is deviated from that expected due to the directional constraint. Connectivity lengths, one along the elongation of the cluster and the other perpendicular to it, diverge as pp c with different critical exponents. The clusters are less anisotropic than the directed percolation clusters. Different moments of the cluster size distribution P s(p) show power law behaviour with | p - p c| in the critical regime with appropriate critical exponents. The values of the critical exponents are estimated and found to be very different from those obtained in other percolation models. The proposed DSP model thus belongs to a new universality class. A scaling theory has been developed for the cluster related quantities. The critical exponents satisfy the scaling relations including the hyperscaling which is violated in directed percolation. A reasonable data collapse is observed in favour of the assumed scaling function form of P s(p). The results obtained are in good agreement with other model calculations. Received 10 November 2002 / Received in final form 20 February 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: santra@iitg.ernet.in  相似文献   

4.
In this study, the electrical, optical and mechanical properties of polystyrene (PS) thin films added graphene nanoplatelet (GNP) have been investigated. Surface conductivity (σ), absorbance intensity (A) and tensile modulus of these composite films have increased with increasing the content of GNP in the composite. The increase in the electrical and optical properties of the PS/GNP composite films has been interpreted by site and classical percolation theory, respectively. The electrical and the optical percolation thresholds of PS/GNP composite films were determined as Rσ?=?23.0?wt.% and Rop?=?13.0?wt.%, respectively. While the conductivity results have been attributed to the classical percolation theory, the optical results have attributed to the site percolation theory. The electrical (βσ) and the optical (βop) critical exponents were calculated as 2.54 and 0.40, respectively. The tensile modulus and the tensile strength of the PS/GNP composites increased with the increasing of GNP content in the PS. But, the toughness of the composites fluctuated with GNP addition.  相似文献   

5.
This Letter is focused on the impact of network topology on the site percolation. Specifically, we study how the site percolation threshold depends on the network dimensions (topological d and fractal D), degree of connectivity (quantified by the mean coordination number Z), and arrangement of bonds (characterized by the connectivity index Q also called the ramification exponent). Using the Fisher's containment principle, we established exact inequalities between percolation thresholds on fractal networks contained in the square lattice. The values of site percolation thresholds on some fractal lattices were found by numerical simulations. Our findings suggest that the most relevant parameters to describe properly the values of site percolation thresholds on fractal networks contained in square lattice (Sierpiński carpets and Cantor tartans) and based on the square lattice (weighted planar stochastic fractal and Cantor lattices) are the mean coordination number and ramification exponent, but not the fractal dimension. Accordingly, we propose an empirical formula providing a good approximation for the site percolation thresholds on these networks. We also put forward an empirical formula for the site percolation thresholds on d-dimensional simple hypercubic lattices.  相似文献   

6.
A magnetic binary system is considered whereA-atoms andB-atoms occupy different sublattices but it is an exchangeJ AB which is responsible for magnetic ordering. Diluting such a system with nonmagnetic atoms it is natural to treat situations where the dilution probability is different for both sublattices. In particular the extreme cases, where either only theA-sublattice or only theB-sublattice is diluted, is discussed for a variety of lattice structures atT=0. It is shown that in some cases the problem can be reduced to ordinary site- or bond percolation problems, while in other cases a new kind of percolation problem arises. Particular attention is paid to the case of spinel structures, and a discussion of recent experiments on the mixed systemyMg2TiO4–(1–y)MgFe2O4 is given. It is shown that additional frustration effects due to competing interactions are necessary to explain the breakdown of magnetic order upon dilution in that material. Critical exponents for this new kind of percolation problem are also estimated by Monte-Carlo methods and it is suggested that it belongs to the same universality class as usual percolation. As a check of the numerical procedures we redetermine the percolation concentrations of both sublattices of the spinel structure, and find that some of the earlier work on this problem is rather inaccurate.  相似文献   

7.
The parting limit or de-alloying threshold for electrolytic dissolution of the more reactive component from a homogeneous fcc binary alloy is usually between 50 and 60 at%. The system that has been most studied, dissolution of Ag from Ag–Au, shows a parting limit close to 55 at% Ag. Here, Kinetic Monte Carlo (KMC) simulations of ‘Ag–Au’ alloys and geometric percolation modeling are used to study the relationship between this parting limit and the high-density site percolation thresholds p c(m) for an fcc lattice, subject to the rule that atoms with coordination greater than nine are prevented from dissolution. The value of p c(9) is calculated from geometric considerations to be 59.97 ± 0.03%. In comparison, using KMC simulations with no surface diffusion and no dissolution allowed for ‘Ag’ atoms with more than nine total neighbors, the parting limit is found to be slightly lower (58.4 ± 0.1%). This slight discrepancy is explained by consideration of the local atomic configurations of ‘Ag’ atoms – a few of these configurations satisfy the percolation requirement but do not sustain de-alloying, while a larger number show the converse behavior. There is still, however, an underlying relationship between the parting limit and the percolation threshold, because being at p c(9) guarantees a percolation path in which successive ‘Ag’ atoms share at least one other ‘Ag’ neighbor. With realistic kinetics of surface diffusion for ‘Au’, the parting limit drops to 54.7 ± 0.3% because a few otherwise inaccessible dissolution paths are opened up by surface diffusion of ‘Au’.  相似文献   

8.
We present a coupled decreasing sequence of random walks on Z that dominate the edge process of oriented bond percolation in two dimensions. Using the concept of random walk in a strip, we describe an algorithm that generates an increasing sequence of lower bounds that converges to the critical probability of oriented percolation pc. From the 7th term on, these lower bounds improve upon 0.6298, the best rigorous lower bound at present, establishing 0.63328 as a rigorous lower bound for pc. Finally, a Monte Carlo simulation technique is presented; the use thereof establishes 0.64450 as a non-rigorous five-digit-precision (lower) estimate for pc. Mathematics Subject Classification (1991): 60K35 Supported by CNPq (grant N.301637/91-1). Supported by a grant from CNPq.  相似文献   

9.
We introduce a new class of two-dimensional cellular automata with a bootstrap percolation-like dynamics. Each site can be either empty or occupied by a single particle and the dynamics follows a deterministic updating rule at discrete times which allows only emptying sites. We prove that the threshold density ρ c for convergence to a completely empty configuration is non trivial, 0<ρ c <1, contrary to standard bootstrap percolation. Furthermore we prove that in the subcritical regime, ρ<ρ c , emptying always occurs exponentially fast and that ρ c coincides with the critical density for two-dimensional oriented site percolation on ℤ2. This is known to occur also for some cellular automata with oriented rules for which the transition is continuous in the value of the asymptotic density and the crossover length determining finite size effects diverges as a power law when the critical density is approached from below. Instead for our model we prove that the transition is discontinuous and at the same time the crossover length diverges faster than any power law. The proofs of the discontinuity and the lower bound on the crossover length use a conjecture on the critical behaviour for oriented percolation. The latter is supported by several numerical simulations and by analytical (though non rigorous) works through renormalization techniques. Finally, we will discuss why, due to the peculiar mixed critical/first order character of this transition, the model is particularly relevant to study glassy and jamming transitions. Indeed, we will show that it leads to a dynamical glass transition for a Kinetically Constrained Spin Model. Most of the results that we present are the rigorous proofs of physical arguments developed in a joint work with D.S. Fisher.  相似文献   

10.
Motivated by the success of a k-clique percolation method for the identification of overlapping communities in large real networks, here we study the k-clique percolation problem in the Erdős–Rényi graph. When the probability p of two nodes being connected is above a certain threshold p c (k), the complete subgraphs of size k (the k-cliques) are organized into a giant cluster. By making some assumptions that are expected to be valid below the threshold, we determine the average size of the k-clique percolation clusters, using a generating function formalism. From the divergence of this average size we then derive an analytic expression for the critical linking probability p c (k).  相似文献   

11.
A new percolation problem is posed where the sites on a lattice are randomly occupied but where only those occupied sites with at least a given numberm of occupied neighbors are included in the clusters. This problem, which has applications in magnetic and other systems, is solved exactly on a Bethe lattice. The classical percolation critical exponents=gg=1 are found. The percolation thresholds vary between the ordinary percolation thresholdp c (m=1)=l/(z – 1) andp c(m=z) =[l/(z – 1)]1/(z–1). The cluster size distribution asymptotically decays exponentially withn, for largen, p p c .Supported in part by National Science Foundation grant DMR78-10813.  相似文献   

12.
We rigorously prove that the probabilityP n that the origin of ad-dimensional lattice belongs to a cluster of exactlyn sites satisfiesP n > exp(–n (d–1)/d ) whenever percolation occurs. This holds for the usual (noninteracting) percolation models for any concentrationp > p c , as well as for the equilibrium states of lattice spin systems with quite general interactions. Such a lower bound applies also if no percolation occurs, but if it appears in some other phase of the system.  相似文献   

13.
Dispersed ionic conductors are random mixtures of a solid salt, e.g. AgI, LiI, with fine particles of an insulating second phase, like Al2O3 or SiO2. These composites can show a dramatic increase in ionic conductivity compared to the pure homogeneous system. Generally, this observation is attributed to an increased conductivity along the internal interface between the conducting salt and the insulating material. In this work a three-component random resistor network (RRN) model for dispersed ionic conductors is reviewed. In the model, the ionic conductor is represented by normally conducting bonds, the insulating material by non-conducting bonds and the interface between the two phases by highly conducting bonds. A special feature of the model is the existence of two critical concentrations of the insulating phase, p′c and p″c , for interface percolation and bulk conduction, respectively, where critical transport properties corresponding to conductor/superconductor and conductor/insulator networks are predicted. The model describes satisfactorily the dependence on composition of the conductivity and activation energy of dispersed ionic conductors. Furthermore, the observed effect on the conductivity of the size of dispersed particles can be described qualitatively well by a generalized version of the RRN model, which in addition predicts a sensitive dependence of the critical thresholds on particle size. Non-universality features in the critical exponents for the conductivity are also discussed within a continuum percolation analog of the model.  相似文献   

14.
Percolation and jamming phenomena are investigated for random sequential deposition of rectangular needles on d=2 square lattices. Associated thresholds and are determined for various needle sizes. Their ratios are found to be a constant for all sizes. In addition the ratio of jamming thresholds for respectively square blocks and needles is also found to be a constant . These constants exhibit some universal connexion in the geometry of jamming and percolation for both anisotropic shapes (needles versus square lattices) and isotropic shapes (square blocks on square lattices). A universal empirical law is proposed for all three thresholds as a function of a. Received 27 January 2000 and Received in final form 2 February 2000  相似文献   

15.
Effects of graphene nanoplatelet (GNP) addition on the electrical conductivity and optical absorbance of poly(methyl methacrylate)/graphene nanoplatelet (PMMA/GNP) composite films were studied. Optical absorbance and two point probe resistivity techniques were used to determine the variations of the optical and electrical properties of the composites, respectively. Absorbance intensity, A, and surface resistivity, Rs, of the composite films were monitored as a function of GNP mass fraction (M) at room temperature. Absorbance intensity values of the composites were increased and surface resistivity values were decreased by increasing the content of GNP in the composite. Electrical and optical percolation thresholds of composite films were determined as Mσ = 27.5 wt.% and Mop = 26.6 wt.%, respectively. The conductivity and the optical results were attributed to the classical and site percolation theories, respectively. Optical (βop) and electrical (βσ) critical exponents were calculated as 0.40 and 1.71, respectively.  相似文献   

16.
Differential Scanning Calorimetric (DSC) studies on AgxGe15Te85-x glasses have been undertaken over a wide range of compositions, to understand the effect of topological thresholds on thermal properties. It is found that the compositional dependence of glass transition temperature (T g ), crystallization temperature (T c ), activation energy for crystallization and thermal stability show anomalies at the rigidity percolation threshold. Unusual variations also observed in different thermal properties at the composition x = 20, clearly establishes the occurrence of chemical threshold in these glasses. Received: 27 January 1998 / Revised: 12 June 1998 / Accepted: 3 July 1998  相似文献   

17.
It has been shown over the last few years that the dynamics close to the glass transition is strongly heterogeneous, both by measuring the diffusion coefficient of tagged particles or by NMR studies. Recent experiments have also demonstrated that the glass transition temperature of thin polymer films can be shifted as compared to the same polymer in the bulk. We propose here first a thermodynamical model for van der Waals liquids, which accounts for experimental results regarding the bulk modulus of polymer melts and the evolution of the density with temperature. This model allows us to describe the density fluctuations in such van der Waals liquids. Then, by considering the thermally induced density fluctuations in the bulk, we propose that the 3D glass transition is controlled by the percolation of small domains of slow dynamics, which allows to explain the heterogeneous dynamics close to T g. We show then that these domains percolate at a lower temperature in the quasi-2D case of thin suspended polymer films and we calculate the corresponding glass transition temperature reduction, in quantitative agreement with experimental results of Jones and co-workers. In the case of strongly adsorbed films, we show that the strong adsorption amounts to enhance the slow domains percolation. This effect leads to 1) a broadening of the glass transition and 2) an increase of T g in quantitative agreement with experimental results. For both strongly and weakly adsorbed films, the shift in T g is given by a power law, the exponent being the inverse of that of the correlation length of 3D percolation. Received 21 March 2000 and Received in final form 4 December 2000  相似文献   

18.
One of the key problems related to the Bak-Sneppen evolution model is to compute the limit distribution of the fitnesses in the stationary regime, as the size of the system tends to infinity. Simulations in [3, 1, 4] suggest that the one-dimensional limit marginal distribution is uniform on (pc, 1), for some pc 0.667. In this paper we define three critical thresholds related to avalanche characteristics. We prove that if these critical thresholds are the same and equal to some pc (we can only prove that two of them are the same) then the limit distribution is the product of uniform distributions on (pc, 1), and moreover pc<0.75. Our proofs are based on a self-similar graphical representation of the avalanches.  相似文献   

19.
An universal invariant for site and bond percolation thresholds ( and respectively) is proposed. The invariant writes where and are positive constants, and d the space dimension. It is independent of the coordination number, thus exhibiting a topology invariance at any d. The formula is checked against a large class of percolation problems, including percolation in non-Bravais lattices and in aperiodic lattices as well as rigid percolation. The invariant is satisfied within a relative error of for all the twenty lattices of our sample at d=2, d=3, plus all hypercubes up to d=6. Received: 7 July 1997 / Accepted: 5 November 1997  相似文献   

20.
We study, on a square lattice, an extension to fully coordinated percolation which we call iterated fully coordinated percolation. In fully coordinated percolation, sites become occupied if all four of its nearest neighbors are also occupied. Repeating this site selection process again yields the iterated fully coordinated percolation model. Our results show a large enhancement in the size of highly connected regions after each iteration (from ordinary to fully coordinated and then to iterated fully coordinated percolation); enhancements that are much larger than an extension of correlations by an extra lattice constant might suggest. We also study the universality among the three problems by determining the corresponding static and dynamic critical exponents. Specifically, a new method to directly calculate the walk dimension, d w , using finite size scaling applied to normal mode analysis is used. This method is applicable to any geometry and requires significantly less computation than previously known calculations to determine d w .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号