首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An API 3000 triple-quadrupole instrument and a QSTAR Pulsar quadrupole time-of-flight (TOF) mass spectrometer were compared for the determination of phosphopeptides by precursor ion scanning in both the positive and negative nanoelectrospray ionization modes. The limits of detection for synthetic phosphopeptides were similar (500 amol microl(-1)) for both types of instruments when monitoring precursors of -79 Da (PO(3)(-)). However, the quadrupole TOF system was approximately fivefold more sensitive (1 fmol microl(-1)) than the triple-quadrupole instrument (5 fmol microl(-1)) when monitoring precursors of 216 Da (immonium ion of phosphotyrosine). The recently introduced Q(2)-pulsing function, which enhances the transmission of fragment ions of a selected m/z window from the collision cell into the TOF part, improved the sensitivity of precursor ion scans on a quadrupole TOF instrument. The selectivity of precursor ion scans is much better on quadrupole TOF systems than on triple quadrupoles because the high resolving power of the reflectron-TOF mass analyzer permits high-accuracy fragment ion selection at no expense of sensitivity. This minimizes interferences from other peptide fragment ions (a-, b-, and y- type) of the same nominal mass but with sufficient differences in their exact masses. As a result, the characteristic immonium ion of phosphotyrosine at m/z 216.043 can be utilized for the selective detection of tyrosine phosphorylated peptides. Our data suggest that, in addition to their superior performance for peptide sequencing, quadrupole TOF instruments also offer a very viable alternative to triple quadrupoles for precursor ion scanning, thus combining high sensitivity and selectivity for both MS and MS/MS experiments in one instrument.  相似文献   

2.
We describe a new interface for a prototype quadrupole-quadrupole-time-of-flight (TOF) mass spectrometer (Centaur, Sciex) that allows rapid switching between electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) modes of operation. Instrument performance in both modes is comparable (i.e., resolution approximately 10,000 FWHM, mass accuracy <10 ppm, sensitivity approximately 1 fmol) because the ion source is decoupled from the TOF mass analyzer by extensive gas collisions in the quadrupole stages of the instrument. The capacity to obtain side-by-side high quality ESI and MALDI mass spectra from a single proteolytic mixture greatly facilitates the identification of proteins and elucidation of their primary structures. Improved strategies for protein identification result from this ability to measure spectra using both ionization modes in the same instrument and to perform MS/MS on singly charged as well as multiply charged ions. Examples are provided to demonstrate the utility and performance of the modified instrument.  相似文献   

3.
Recent mass spectrometry instrumentation developments include the appearance of novel hybrid tandem instrumentation, Q-TOF, consisting of a quadrupole mass analyzer (MS1) and a time-of-flight (TOF) analyzer. The TOF analyzer is not scanned, but collects all fragment ions entering the analyzer at a given time. Thus, the typical precursor scan experiment cannot be performed. Instead, a full MS-MS spectrum can be acquired for each mass passed by MS1. Appropriate data manipulation, i.e. extracted ion current chromatograms, can correlate specific fragment ion formation to the parent ion. Precursor scanning and LC-MS-MS are compared on a Q-TOF instrument for the determination of protein modifications, including acetylation and phosphorylation. Model peptides used for phosphopeptide detection were generated from a mixture of beta-casein. Model acetylated peptides were generated from a mixture of acetylated substance P1-9 and substance P1-11. The results were then applied to a more complex mixture, a digest of HIV-p24. Results indicate that precursor scanning is useful for screening, but that LC-MS-MS has a sensitivity advantage and is less susceptible to suppression effects. LC-MS-MS, therefore, appears to be better for the detection of trace components in complex mixtures.  相似文献   

4.
The rapid desorption electrospray ionisation (DESI) of some small molecules and their fragmentation using a triple-quadrupole and a hybrid quadrupole time-of-flight mass spectrometer (Q-ToF) have been investigated. Various scanning modes have been employed using the triple-quadrupole instrument to elucidate fragmentation pathways for the product ions observed in the collision-induced dissociation (CID) spectra. Together with accurate mass tandem mass spectrometry (MS/MS) measurements performed on the hybrid Q-ToF mass spectrometer, unequivocal product ion identification and fragmentation pathways were determined for deprotonated metoclopramide and protonated aspirin, caffeine and nicotine. Ion structures and fragmentation pathway mechanisms have been proposed and compared with previously published data. The necessity for elevated resolution for the differentiation of isobaric ions are discussed.  相似文献   

5.
Hybrid quadrupole time-of-flight mass spectrometry (QTOF MS) has gained wide acceptance in many fields of chemistry, for example, proteomics, metabolomics and small molecule analysis. This has been due to the numerous technological advances made to this mass analyser in recent years. In the environmental field, the instrument has proven to be one of the most powerful approaches for the screening of organic pollutants in different matrices due to its high sensitivity in full acquisition mode and mass accuracy measurements. In the work presented here, the optimum experimental conditions for the creation of an empirical TOF MS spectra library have been evaluated. For this model we have used a QTOF Premier mass spectrometer and investigated its functionalities to obtain the best MS data, mainly in terms of mass accuracy, dynamic range and sensitivity. Different parameters that can affect mass accuracy, such as lock mass, ion abundance, spectral resolution, instrument calibration or matrix effect, have also been carefully evaluated using test compounds (mainly pesticides and antibiotics). The role of ultra-high-pressure liquid chromatography (UHPLC), especially when dealing with complex matrices, has also been tested. In addition to the mass accuracy measurements, this analyser allows the simultaneous acquisition of low and high collision energy spectra. This acquisition mode greatly enhances the reliable identification of detected compounds due to the useful (de)protonated molecule and fragment ion accurate mass information obtained when working in this mode. An in-house empirical spectral library was built for approximately 230 organic pollutants making use of QTOF MS in MS(E) mode. All the information reported in this paper is made available to the readers to facilitate screening and identification of relevant organic pollutants by QTOF MS.  相似文献   

6.
The interpretation of mass spectra is a key process during compound identification, and the combination of tandem mass spectrometry (MS/MS) with high-accuracy mass measurements may deliver crucial information on the identity of a compound. Obtaining accurate mass data of fragment ions in MS/MS reveals the particular problem of mass calibration when a lockmass, which is frequently used to obtain accurate masses in MS, is absent. An alternative technique is to recalibrate the MS/MS spectrum using a reference MS/MS spectrum acquired under the same conditions. We have tested and validated this approach using a hybrid quadrupole/orthogonal acceleration reflectron-type time-of-flight (TOF) mass spectrometer. The results were compared with those obtained under similar conditions on a Fourier transform ion cyclotron resonance (FT-ICR) instrument. We found that the mass accuracy observed with such an "external" recalibration on the TOF instrument in MS/MS is identical to what can be obtained on a similar instrument operating in one-dimensional MS mode using the lockmass technique. However, mass accuracy in both cases is one order of magnitude inferior to that obtained using FTMS, and also inferior to that observed using sector field MS when operated at comparable resolution. Nevertheless, for small (<200 Da) molecules, this mass accuracy was still sufficient to have the "true" elemental composition identified as the first hit in about 70% of all cases. It was possible to elucidate the fragmentation mechanism of eight azaheterocycles containing a pyridine moiety, where the accurate mass data from the TOF instrument allowed distinction between two alternative fragmentation pathways.  相似文献   

7.
Orthogonal acceleration time‐of‐flight (oa‐TOF) mass spectrometry (MS) was coupled to gas chromatography (GC) to measure ion yields (ratio of ion counts to number of neutrals entering the ion source) and signal‐to‐noise (S/N) in the electron ionization (EI) mode (hard ionization) as well as in the soft ionization modes of chemical ionization (CI), electron capture negative ion chemical ionization (NICI) and field ionization (FI). Mass accuracies of the EI and FI modes were also investigated. Sixteen structurally diverse volatile organic compounds were chosen for this study. The oa‐TOF mass analyzer is highly suited for FI MS and provided an opportunity to compare the sensitivity of this ionization method to the more conventional ionization methods. Compared to the widely used quadrupole mass filter, the oa‐TOF platform offers significantly greater mass accuracy and therefore the possibility of determining the empirical formula of analytes. The findings of this study showed that, for the instrument used, EI generated the most ions with the exception of compounds able to form negative ions readily. Lower ion yields in the FI mode were generally observed but the chromatograms displayed greater S/N and in many cases gave spectra dominated by a molecular ion. Ion counts in CI are limited by the very small apertures required to maintain sufficiently high pressures in the ionization chamber. Mass accuracy for molecular and fragment ions was attainable at close to manufacturer's specifications, thus providing useful information on molecular ions and neutral losses. The data presented also suggests a potentially useful instrumental combination would result if EI and FI spectra could be collected simultaneously or in alternate scans during GC/MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Fragmentation studies using both an ion-trap mass analyzer and a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer were performed in order to establish the fragmentation pathways of organic molecules. A general strategy combining MSn data (n = 1-4) in an ion-trap analyzer with tandem mass spectrometry and in-source collision-induced dissociation tandem mass spectrometry (CID MS/MS) in a Q-TOF instrument was applied. The MSn data were used to propose a tentative fragmentation pathway following genealogical relationships. When several assignments were possible, MS/MS and in-source CID MS/MS (Q-TOF) allowed the elemental compositions of the fragments to be confirmed. Quaternary ammonium herbicides (quats) were used as test compounds and their fragmentation pathways were established. The elemental composition of the fragments was confirmed using the TOF analyzer with relative errors <0.0023 Da. Some fragments previously reported in the literature were reassigned taking advantage of the high mass resolution and accuracy of the Q-TOF instrument, which made it possible to solve losses where nitrogen was involved.  相似文献   

9.
The use of a new hybrid quadrupole/linear ion trap known as the Q TRAP offers unique benefits as a LC-MS-MS detector for both small and large molecule analyses. The instrument combines the capabilities of a triple quadrupole mass spectrometer and ion trap technology on a single platform. Product ion scans are conducted in a hybrid fashion with the fragmentation step accomplished via acceleration into the collision cell followed by trapping and mass analysis in the Q3 linear ion trap. This results in triple quadrupole fragmentation patterns with no inherent low molecular mass cutoff. In-trap fragmentation is also possible in order to provide triple MS (MS3) capabilities. There are also several scan modes that are not possible on conventional instruments that enable identification of analytes within complex biological matrixes for subsequent high sensitivity product ion scans. This report will describe the new hybrid instrument and the principles of operation, and also provide examples of the unique scan modes and capabilities of the Q TRAP for LC-MS-MS detection in metabolism identification.  相似文献   

10.
This study attempted to determine the molecular composition of inorganic analytes at the surface of solids by Fourier transform laser microprobe mass spectrometry (FT LMMS) with an external ion source. A database was established from the analysis of pure compounds. FT LMMS uses a similar ionization as the older LMMS instruments with time-of-flight (TOF) mass analyzer. However, apart from the mass resolution, the mass spectral patterns can be significantly different in FT LMMS compared to TOF LMMS. FT LMMS yields detailed information on the analyte by means of structural fragments, enabling us to specify the main building blocks, as well as adduct ions, consisting of the analyte molecule and a stable ion. Hence, deductive reasoning allows tentative characterization of the analogs without reference spectra, except for compounds with the same elements in different stoichiometries. In that case comparative data are needed.  相似文献   

11.
A new method based on ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry ((Q-ToF)-MS) was developed for the analysis of 32 biologically active compounds including anti-inflammatories, analgesics, lipid regulators, psychiatric drugs, anti-ulcer agents, antibiotics, beta-blockers and phytoestrogens. This new method allows chromatographic analysis in 14 min, with instrumental detection limits from 2 to 84 pg, and limits of quantification ranging from 0.1 to 15 ng/L in tap water, and from 2 to 300 ng/L in wastewater. The potential of liquid chromatography with triple quadrupole mass spectrometry (LC/QqQ-MS) was compared with that of UPLC/(Q-ToF)-MS for the analysis of biologically active compounds in water samples. LC/Q-ToF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of ToF instruments diminishes the problem of isobaric interferences and helps the analysis of trace compounds in complex samples. In this work UPLC/Q-ToF chromatograms were recorded containing full scan spectral data. The m/z values of analytes were extracted from the total ion chromatogram (TIC) and the accurate masses of the compounds were obtained. In addition, to increase the selectivity of ToF measurements a narrow accurate mass interval (20 m m/z units mass window) was used to reconstruct the chromatographic traces. However, regarding quantitative performance in terms of dynamic range and limits of detection (LODs), typical LODs achieved by QqQ instruments operating in multiple-reaction monitoring (MRM) mode ranged from 1 to 50 ng/L in wastewater, and the linear response for QqQ instruments generally covers three orders of magnitude. This is an important advantage over ToF instruments and one of the reasons why QqQ instruments are widely used in quantitative environmental analysis.  相似文献   

12.
A simple and rapid method using reversed-phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the simultaneous determination of the urinary metabolites of benzene, toluene, xylene and styrene in human urine specimens and standard solutions is described. A hybrid quadrupole/time-of-flight (QqTOF) mass spectrometer was compared for the determination of metabolite of aromatic solvents in urine samples. The metabolites selected were: trans,trans-muconic acid, hippuric acid, o-, m- and p-methylhippuric acid and phenylglyoxylic acid. The compounds were well separated from each other on narrow-bore 1-mm i.d. reversed-phase LC C-18 columns. Average recoveries for loading 100 microL of urine samples varied from 88-110% and the quantification limits were less than 30 ng/mL for each analyte (3 ng/mL for trans,trans-muconic acid). The qualitative information obtained (mass accuracy, resolution and full-scan spectra) with the QqTOF mass spectrometer allows a secure identification of analytes in biological matrices.  相似文献   

13.
The design and performance of a new time-of-flight mass spectrometer is reported. The instrument combines the advantages of a pulsed drawout TOF analyzer with a liquid secondary ion source. Differences from commercially available pulsed TOF analyzers (Wiley/McLaren type) are discussed with regard to operation with ion desorption from a liquid matrix.  相似文献   

14.
Using O-acetyl-N-acyl derivatives of O-methyl sialoside methyl esters, it was shown that an ion trap and a hybrid analyzer (linear quadrupole–time-of-flight analyzer, reflectron) give comparable, though not identical secondary mass spectra for the [M + Na]+ and [M + K]+ ions. A parallel use of an ion trap and a hybrid QqToF instrument gives information about the fragmentation pathways of ions of sialic acid derivatives under collisional activation. In this case, the sequence of fragmentation may be established using an ion trap, whereas a QqToF instrument offers a possibility of revealing the elemental composition of fragment ions quickly and unequivocally.  相似文献   

15.
In this report, the mass spectral analysis of azaspiracid biotoxins is described. Specifically, the collision-induced dissociation (CID) behavior and differences between CID spectra obtained on a triple-quadrupole, a quadrupole time-of-flight, and an ion-trap mass spectrometer are addressed here. The CID spectra obtained on the triple-quadrupole mass spectrometer allowed the classification of the major product ions of the five investigated compounds (AZA 1-5) into five distinct fragment ion groups, according to the backbone cleavage positions. Although the identification of unknown azaspiracids was difficult based on CID alone, the spectra provided sufficient structural information to allow confirmation of known azaspiracids in marine samples. Furthermore, we were able to detect two new azaspiracid analogs (AZA 1b and 6) in our samples and provide a preliminary structural analysis. The proposed dissociation pathways under tandem mass spectrometry (MS/MS) conditions were confirmed by a comparison with accurate mass data from electrospray quadrupole time-of-flight MS/MS experiments. Regular sequential MS(n) analysis on an ion-trap mass spectrometer was more restricted in comparison to the triple-quadrupole mass spectrometer, because the azaspiracids underwent multiple [M + H - nH(2)O](+) (n = 1-6) losses from the precursor ion under CID. Thus, the structural information obtained from MS(n) experiments was somewhat limited. To overcome this limitation, we developed a wide-range excitation technique using a 180-u window that provided results comparable to the triple-quadrupole instrument. To demonstrate the potential of the method, we applied it to the analysis of degraded azaspiracids from mussel tissue extracts.  相似文献   

16.
A liquid chromatographic mass spectrometric strategy for systematic toxicological analysis (STA) is presented using the automatic 'on-the-fly' single mass spectrometry mode to tandem mass spectrometry mode (MS to MS/MS) switching abilities of a quadrupole time-of-flight (Q-TOF) instrument. During the chromatographic run, the quadrupole is initially set to transmit all masses until (an) ion(s) reaches a certain set threshold. Thereupon, the quadrupole automatically switches to the MS/MS mode, selecting the ion(s), which are subsequently fragmented in the high-efficiency hexapole collision cell, thus generating product ions that are further mass analyzed by the TOF. By limiting the TOF spectral accumulation time in the MS/MS mode to a statistically acceptable minimum, the quadrupole almost instantly switches back to the MS mode. Qualitative information, comprising the complementary MS ([M + H](+) ion mass) and MS/MS (informative product ion profile) data, as well as quantitative information obtained by integration of the MS extracted ion chromatogram(s), can be obtained in one single acquisition. Optimization of the automatic switching parameters, such as threshold, TOF spectral accumulation time, detection window and collision energy, was carried out by injection of a mix of 17 common drugs which were not necessarily baseline separated in the chromatographic system used. Indeed, the complete separation of the drugs is not deemed necessary since up to 8 different ions can 'simultaneously' be selected for MS/MS if they reach the preset criteria. In addition, the quantitative performance of the method was defined. In a second phase, the developed method was field-tested. To that end, the resulting data from extracts of urine samples were compared with and found to be in close concordance with those obtained by a standard toxicological analysis. This innovative approach clearly holds the potential for a substantial advance in the introduction of LC/MS in STA.  相似文献   

17.
A new analytical approach, based on derivatization with 2,2,2-trichloroethyl chloroformate and gas chromatography/mass spectrometry (GC/MS), was investigated for qualitative and quantitative analyses of a large range of amphetamine-related drugs and ephedrines in plasma, urine and hair samples. Sample preparation involved alkaline extraction of analytes from biological samples using Extrelut columns, after addition of the internal standard 3,4-methylenedioxypropylamphetamine (MDPA), and subsequent derivatization to produce 2,2,2-trichloroethylcarbamates. GC/MS analyses, in splitless mode using a slightly polar 30-m capillary column, were performed with quadrupole or ion trap instruments. MS acquisition modes were electron ionization (EI) in full-scan or selected ion monitoring (SIM) modes (quadrupole), and full-scan MS or MS/MS modes with chemical ionization (CI) conditions (ion trap). EI spectra of 2,2,2-trichloroethylcarbamates showed variably abundant molecular ions as well as abundant diagnostic fragment ions, both characterized by ion clusters reflecting the isotope distribution of three chlorine atoms in the derivatized molecules. CI spectra showed abundant protonated molecules. Quantitative studies using EI SIM conditions gave recoveries in the range 74-89%, linear response over ranges of 10-2000 ng/mL (plasma and urine) and 0.20-20 ng/mg (hair), with corresponding limits of detection in the ranges 2-5 ng/mL and 0.1-0.2 ng/mg. Potential applications (following full method validation) include clinical and forensic toxicology, as well as doping control.  相似文献   

18.
On-line analysis of compounds from solution has been greatly facilitated by the advent of electrospray ionization mass spectrometry (ESI-MS). Although quadrupole mass analyzers are most commonly used with ESI at present, time-of-flight (TOF) mass spectrometers offer several potential advantages including high data acquisition rates, which are desirable for fast separation techniques. One method of coupling ESI and TOF uses an ion trap for temporary storage and accumulation of the electrosprayed ions prior to TOF mass analysis. Previous studies have not fully addressed the effects of several key variables on the analytical capabilities of this type of instrument. In this study, the characterization of an ion trap/linear TOF instrument for ESI is described. The behavior of various analytes is divided into two separate groups; each one is found to have its own optimal set of operating conditions. The reasons for the observed differences between groups are explored. Issues relevant to mass resolution, sensitivity, mass range, mass-to-charge ratio discrimination, and mass measurement accuracy are addressed. Finally, it is suggested that the analytical capability of this type of instrument could be significantly improved by changing the ion optics from the existing focusing lenses to a rf-only quadrupole lens.  相似文献   

19.
Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time‐of‐flight (TOF) mass spectrometers. In the current work, a custom‐built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT‐ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT‐ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2‐benzanthracene and 9,10‐diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT‐ICR MS provides complex sample analysis that is rapid, highly selective and information‐rich, but limited to relatively low‐mass analytes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A novel hybrid tandem mass analyzer, coupling a quadrupole ion trap with a quadrupole mass filter, has been constructed to permit mass analysis of ions ejected from the ion trap. The initial application of this instrument is the investigation of the origin of mass shifts in the ion trap due to ion fragility. We hypothesize that fragile ions undergo mass shifts, characterized by peak fronting, due to early ejection from the quadrupole ion trap. As these ions come into resonance with the ejection frequency, they gain kinetic energy, collide with buffer gas molecules and thus can dissociate to produce fragment ions. These fragment ions will not be stable within the ion trap as they are situated past the stability boundary at q(z) = 0. 908. Consequently the fragment ions are ejected prematurely. This results in an apparent mass shift due to peak fronting. The experiments reported here clearly document the production of fragment ions as the origin of mass shifts during the resonant ejection of fragile ions. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号