首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of surface-active ionic liquids, RMeImCl, has been synthesized by the reaction of purified 1-methylimidazole and 1-chloroalkanes, RCl, R=C(10),C(12),C(14), and C(16), respectively. Adsorption and aggregation of these surfactants in water have been studied by surface tension measurement. Additionally, solution conductivity, electromotive force, fluorescence quenching of micelle-solubilized pyrene, and static light scattering have been employed to investigate micelle formation. The following changes resulted from an increase in the length of R: an increase of micelle aggregation number; a decrease of: minimum area/surfactant molecule at solution/air interface; critical micelle concentration, and degree of counter-ion dissociation. Theoretically-calculated aggregation numbers and those based on quenching of pyrene are in good agreement. Gibbs free energies of adsorption at solution/air interface, DeltaG(ads)(0), and micelle formation in water, DeltaG(mic)(0), were calculated, and compared to those of three surfactant series, alkylpyridinium chlorides, RPyCl, alkylbenzyldimethylammonium chlorides, RBzMe(2)Cl, and benzyl(3-acylaminoethyl)dimethylammonium chlorides, R(')AEtBzMe(2)Cl, respectively. Contributions to the above-mentioned Gibbs free energies from surfactant methylene groups (in the hydrophobic tail) and the head-group were calculated. For RMeImCl, the former energy is similar to that of other cationic surfactants. The corresponding free energy contribution of the head-group to DeltaG(mic)(0) showed the following order: RPyCl approximately RBzMe(2)Cl>RMeImCl>R(')AEtBzMe(2)Cl. The head-groups of the first two surfactant series are more hydrophobic than the imidazolium ring of RMeImCl, this should favor their aggregation. Micellization of RMeImCl, however, is driven by a relatively strong hydrogen-bonding between the chloride ion and the hydrogens in the imidazolium ring, in particular the relatively acidic H2. This interaction more than compensates for the relative hydrophilic character of the diazolium ring. As indicated by the corresponding DeltaG(mic)(0), micellization of R(')AEtBzMe(2)Cl is more favorable than that of RMeImCl because the CONH group of the former surfactant series forms hydrogen bonds to both the counter-ion and the neighboring molecules in the micelle.  相似文献   

2.
The energetics of micelle formation of three single-chain cationic surfactants bearing single (h = 1), double (h = 2), and triple (h = 3) trimethylammonium [(+)N(CH(3))(3)] headgroups have been investigated by microcalorimetry. The results were compared with the microcalorimetric data obtained from well-known cationic surfactant, cetyl trimethylammonium bromide (CTAB), bearing a single chain and single headgroup. The critical micellar concentrations (cmc's) and the degrees of counterion dissociation (alpha) of micelles of these surfactants were also determined by conductometry. The cmc and the alpha values increased with the increase in the number of headgroups of the surfactant. The relationship between the cmc of the surfactant in solution and its free energy of micellization (DeltaG(m)) was derived for each surfactant. Exothermic enthalpies of micellization (DeltaH(m)) and positive entropies of micellization (DeltaS(m)) were observed for all the surfactants. Negative DeltaH(m) values increased from CTAB to h = 1 to h = 2 and decreased for h = 3 whereas DeltaS(m) values decreased with increase in the number of headgroups. The DeltaG(m) values progressively became less negative with the increase in the number of headgroups. This implies that micelle formation becomes progressively less favorable as more headgroups are incorporated in the surfactant. From the steady-state fluorescence measurements using pyrene as a probe, the micropolarities sensed by the probe inside various micelles were determined. These studies suggest that the micelles are more hydrated with multiheaded surfactants and the micropolarity of micelles increases with the increase in the number of headgroups.  相似文献   

3.
Both thermodynamic and microenvironmental properties of the micelles for a series of cationic surfactants hexadecyltrimethylammonium (C16TAX) with different counterions, F-, Cl-, Br-, NO3-, and (1/2)SO4(2-), have been studied. Critical micelle concentration (CMC), degree of micelle ionization (alpha), and enthalpy of micellization (DeltaH(mic)) have been obtained by conductivity measurements and isothermal titration microcalorimetry. Both the CMC and the alpha increase in the order SO4(2-) < NO3- < Br- < Cl- < F-, consistent with a decrease in binding of counterion, except for the divalent anion sulfate. DeltaH(mic) becomes less negative through the sequence NO3- < Br- < Cl- < F- < SO4(2-), and even becomes positive for the divalent sulfate. The special behavior of sulfate is associated with both its divalency and its degree of dehydration. Gibbs free energies of micellization (DeltaG(mic)) and entropies of micellization (DeltaS(mic)) have been calculated from the values of DeltaH(mic), CMC, and alpha and can be rationalized in terms of the Hofmeister series. The variations in DeltaH(mic) and DeltaS(mic) have been compared with those for the corresponding series of gemini surfactants. Electron spin resonance has been used to assess the micropolarity and the microviscosity of the micelles. The results show that the microenvironment of the spin probe in the C16TAX surfactant micelles depends strongly on the binding of the counterion.  相似文献   

4.
The enthalpies of dilution of micellar solutions of several 12-s-12 dimeric surfactants of the alkanediyl-alpha,omega-bis(dodecyldi-methylammonium bromide) type, differing by the carbon number s of the alkanediyl spacer, and of dodecyltrimethylammonium bromide (DTAB) have been measured calorimetrically, in a range of concentrations extending from well below to well above the critical micelle concentration (cmc). The results permitted the determination of the enthalpy of micellization, DeltaH degrees (M), of the investigated surfactants at 25 and 35 degrees C. The values of DeltaH degrees (M) were always negative and became more negative as the temperature was increased. The plot of -DeltaH degrees (M) against s showed a shallow minimum at about s=5 and a large decrease of -DeltaH degrees (M) going from 12-2-12 to 12- 4-12. This effect has been attributed to the contribution to DeltaH degrees (M) of the hindered rotation of the dodecyl chains around the spacer C-C bond for 12-2-12. This hindrance is shown to rapidly disappear when s is increased from 2 to above 4. The specific heats of micellization, the free energies of micellization, and the entropies of micellization (DeltaS degrees (M)) have been calculated using the DeltaH degrees (M) values and the reported cmc and micelle ionization degree data for 12-s-12 surfactants and DTAB. For all surfactants the results show that TDeltaS degrees (M)>-DeltaH degrees (M), indicating an entropy-driven micellization.  相似文献   

5.
We used dynamic light scattering (DLS), steady-state fluorescence, time resolved fluorescence quenching (TRFQ), tensiometry, conductimetry, and isothermal titration calorimetry (ITC) to investigate the self-assembly of the cationic surfactant cetyltrimethylammonium sulfate (CTAS) in aqueous solution, which has SO(2-)4 as divalent counterion. We obtained the critical micelle concentration (cmc), aggregation number (N(agg)), area per monomer (a0), hydrodynamic radius (R(H)), and degree of counterion dissociation (alpha) of CTAS micelles in the absence and presence of up to 1 M Na2SO4 and at temperatures of 25 and 40 degrees C. Between 0.01 and 0.3 M salt the hydrodynamic radius of CTAS micelle R(H) approximately 16 A is roughly independent on Na2SO4 concentration; below and above this concentration range R(H) increases steeply with the salt concentration, indicating micelle structure transition, from spherical to rod-like structures. R(H) increases only slightly as temperature increases from 25 to 40 degrees C, and the cmc decreases initially very steeply with Na2SO4 concentration up to about 10 mM, and thereafter it is constant. The area per surfactant at the water/air interface, a0, initially increases steeply with Na2SO4 concentration, and then decreases above ca. 10 mM. Conductimetry gives alpha = 0.18 for the degree of counterion dissociation, and N(agg) obtained by fluorescence methods increases with surfactant concentration but it is roughly independent of up to 80 mM salt. The ITC data yield cmc of 0.22 mM in water, and the calculated enthalpy change of micelle formation, Delta H(mic) = 3.8 kJ mol(-1), Gibbs free energy of micellization of surfactant molecules, Delta G(mic) = -38.0 kJ mol(-1) and entropy TDelta S(mic) = 41.7 kJ mol(-1) indicate that the formation of CTAS micelles is entropy-driven.  相似文献   

6.
The micellization of the ionic liquid N-alkyl-N-methylpyrrolidinium bromide (C(n)MPB, n = 12, 14 and 16) in aqueous solutions was investigated by surface tension measurements, electrical conductivity and static luminescence quenching. The effectiveness of the surface tension reduction (Π(cmc)), maximum surface excess concentration (Γ(max)) and the minimum area (A(min)) occupied per surfactant molecule at the air/water interface can be obtained from the surface tension measurements at 25 °C. The critical micelle concentration (cmc) at different temperatures and a series of thermodynamic parameters (ΔG, ΔH and ΔS) of micellization were evaluated from electrical conductivity measurements in the temperature range of 25-45 °C. The thermodynamic parameters show that the micelle formation is entropy-driven at low temperature and enthalpy-driven at high temperature. Furthermore, the micelle aggregation number (N(agg)) of C(n)MPB was calculated according to the Turro-Yekta method through static luminescence quenching and found that N(agg) (49, 55, and 59) increased with the hydrophobic chain length of C(n)MPB.  相似文献   

7.
The aggregation properties of cationic gemini surfactants alkanediyl-alpha,omega-bis(dodecyldimethylammonium bromide), [C(12)H(25)(CH(3))(2)N(CH(2))(m)(CF(2))(n)(CH(2))(m))N(CH(3))(2)C(12)H(25)]Br(2) [where 2m + n = 12 and n = 0, 4, and 6; designated as 12-12-12, 12-12(C(4)(F))-12, and 12-12(C(6)(F))-12, respectively] have been studied by microcalorimetry, time-resolved fluorescence quenching, and electrical conductivity. Compared with a fully hydrocarbon spacer of 12-12-12, the fluorinated spacer with a lower ratio of CF(2) to CH(2) in 12-12(C(4)(F))-12 tends to disfavor the aggregation, leading to larger critical micelle concentration (cmc), lower micelle aggregation number (N), and less negative Gibbs free energy of micellization (DeltaG(mic)). However, the fluorinated spacer with a higher ratio of CF(2) to CH(2) in 12-12(C(6)(F))-12 may prompt the aggregation, resulting in lower cmc, higher N, and more negative DeltaG(mic). It is also noted that enthalpy change of micellization (DeltaH(mic)) for 12-12(C(4)(F))-12 is the most exothermic, but the values of DeltaH(mic) for 12-12-12 and 12-12(C(6)(F))-12 are almost the same. These results are rationalized in terms of competition among the enhanced hydrophobicity and the rigidity of the fluorinated spacer, and the variation of immiscibility of the fluorinated spacer with the hydrocarbon side chains.  相似文献   

8.
The micellization of a novel family of nonionic surfactants poly(oxyethylene) glycol alkyl ethers has been studied by microcalorimetry. One of the surfactants has adamantane, and the other nonionic surfactants have a benzene ring in their hydrophobic chains, which moves from the terminal of the hydrophobic chain toward the headgroup. Moreover, the alkyl chain of the nonionic surfactants is straight or branched. Both the critical micelle concentration (cmc) and the thermodynamic parameters associated with the micelle formation have been obtained. The cmc decreases and the enthalpy of micelle formation (deltaH(mic)) becomes less positive gradually as the length of hydrophobic chain increases, whereas the values of cmc and deltaH(mic) tend to increase for the surfactants with a longer ethylene oxide chain. However, the deltaH(mic) value of the surfactant with seven carbon atoms in a hydrophobic chain is more positive than that of the surfactant with six carbon atoms in a hydrophobic chain. Comparing with the nonionic surfactant with a methylene hydrophobic chain, the surfactants with benzene rings and adamantane groups have larger cmc values and the cmc values increase with the size of the groups. Furthermore, moving the phenyl group from the terminal of the hydrophobic chain to the neighbor of the hydrophilic headgroup leads to the decreased cmc. Both the variation of hydrophobic interaction from the movement of phenyl group and pi-pi interaction among adjacent phenyl groups affect deltaH(mic) values.  相似文献   

9.
Novel anionic gemini surfactants, 1,2-bis(N-beta-carboxypropanoyl-N-alkylamino)ethane (2CnenAm; n is hydrocarbon chain length of 6, 8, 10, 12, or 14), with two hydrocarbon chains, two carboxylate groups, and two amide groups, were synthesized by three-step reactions. Their solution properties were characterized by equilibrium and dynamic surface tension, steady-state fluorescence spectroscopy of pyrene, and dynamic light-scattering techniques. The surface tension measurements of 2CnenAm give low critical micelle concentrations (cmc), great efficiency in lowering the surface tension, and strong adsorption at air/water interface. Gemini surfactants behave normally with the logarithm of cmc decrease linearly with the chain length. In addition, adsorption and micellization behavior of 2CnenAm was estimated by parameter of pC20, cmc/C20, and standard free energy (DeltaG(0)mic and DeltaG(0)ads); they are significantly influenced by hydrocarbon chain length, and the adsorption is promoted more than the micellization as chain length becomes longer. The results of dynamic light-scattering and fluorescence quenching indicate that small micelles of 2CnenAm are observed at the concentrations above the cmc, and further large particles are also seen. Further, from the dynamic surface tension measurements, it is found that the shorter hydrocarbon chain length of 2CnenAm, the faster the rate of decrease of surface tension.  相似文献   

10.
Three series of nonionic N-alkylaldonamides, N-alkyl-N-methylgluconamides (Cn-MGA, Cn: n-C(10)H(21), n-C(12)H(25), n-C(14)H(29), n-C(16)H(33), and n-C(18)H(37)), N-alkyl-N-methyllactobionamides (Cn-MLA, alkyl as above-mentioned), and N-oleyl-N-methylglucon/lactobionamide, were synthesized in the reaction of an appropriate N-alkyl-N-methylamine with delta-D-glucolactone and lactobionic acid, respectively. Krafft temperatures of aqueous solutions and surface properties of these surfactants at 20 degrees C, i.e., surface excess concentration, Gamma(cmc), surface area demand per molecule, A(min), efficiency in surface tension reduction, pC(20), effectiveness in surface tension reduction, Pi(cmc), critical micelle concentration, CMC, and CMC/C(20) parameter as well as standard free energies of adsorption, DeltaG degrees (ads), and of micellization, DeltaG degrees (mic), were determined. It was shown that introduction of the methyl group to the amide nitrogen increased the solubility of the surfactants, which was confirmed by their Krafft temperatures. Lactobionamides are more water soluble than gluconamides. On the other hand, the Cn-MGA surfactants are more surface active than the respective Cn-MLA ones. This observation is based on the determined adsorption and micellization parameters. The presence of one double bond in a hydrocarbon chain as in oleyl-amides increases their hydrophilic character compared with that of saturated C18 derivatives. No distinct differences were observed between the A(min) values obtained for both series studied, although they differ markedly in the size of the hydrophilic groups. Copyright 2001 Academic Press.  相似文献   

11.
Specific conductivities of alkyldimethylbenzylammonium chlorides (alkyl=decyl-, dodecyl-, tetradecyl-, and hexadecyl-) in aqueous solutions were measured as a function of molality and temperature. Critical micelle molalities (cmc) and degrees of ionization of the micelles, beta, were estimated from the dependence of the specific conductivity on molality. It was found that temperature dependence of cmc is U-shaped with a minimum shifting toward higher temperatures with a decrease in the chain length of the alkyl group. The temperature dependence of ln xcmc (where xcmc is the cmc in mole fraction units) was fitted to the equation of Muller, which we modified by taking into account the temperature dependencies both of beta and of change in heat capacity upon micellization. From the fitting parameters, Gibbs free energies, enthalpies, and entropies of micellization as a function of temperature were estimated.  相似文献   

12.
The enthalpies of micellization of the following surfactant series have been determined by calorimetry: benzyl (2-acylaminoethyl)dimethylammonium chlorides, RABzMe2Cl, and alkyldimethylbenzylammonium chlorides, RBzMe2Cl, where A, Bz and Me refer to amide, benzyl, and methyl groups, respectively and the acyl (for RABzMe2Cl) and/or the alkyl (for RBzMe2Cl) groups C10, C12, C14, and C16, respectively. For both series, the shapes of the calorimetric titration curves (enthalpograms) depend on the following micellar parameters: critical micelle concentration, aggregation number, and degree of counterion binding. The calorimetric-based critical micelle concentrations are in excellent agreement with those determined by conductivity. The Gibbs free energy, the enthalpy and the entropy of micellization were calculated, and divided into contributions from the CH2 groups of the hydrophobic tail, and the terminal CH3 plus head group of the surfactant. For both surfactant series, all thermodynamic parameters per CH2 group were found to be similar, since their transfer (from bulk solution to the micelle) is independent of the surfactant head-group structure. The Gibbs free energy, the enthalpy, and the entropy of transfer of the head group of RABzMe2Cl are more favorable than their counterparts for RBzMe2Cl, because of direct and/or water mediated hygrogen bonding of the amide groups in the micelle.  相似文献   

13.
Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect.  相似文献   

14.
Solubilization of polycyclic aromatic compounds in aqueous dilute solutions of three cationic amphiphiles was studied. The maximum additive concentrations (MACs) of the aromatic compounds were constant below their critical micelle concentrations (cmcs) and monotonically increased above the cmcs. The first stepwise association constants (K(1)) between a solubilizate monomer and a vacant micelle were evaluated from the MACs for the solubilizates using the mass action model for solubilization into micelles in the dilute solution. The standard Gibbs energy changes of solubilization (DeltaG degrees ) were calculated from K(1), and the enthalpy and entropy changes of solubilization were estimated from the temperature dependence. MACs of each surfactant at the same surfactant concentration above the cmc were different depending on the cmc, but there was little difference in the DeltaG degrees values. Some differences appeared in the enthalpy and entropy values in accordance with their micellar size or degrees of counterion binding to micelles. DeltaG degrees for solubilization decreased linearly with carbon number of aromatic solubilizate for each micellar solution. Copyright 2000 Academic Press.  相似文献   

15.
A series of ionic liquid-type Gemini imidazolium surfactants with four-methylene spacer groups were synthesized ([C(n)-4-C(n)im]Br(2), n=10, 12, 14). The surface activity and thermodynamic properties of micellization between the Gemini imidazolium surfactants and their corresponding monomers ([C(n)mim]Br, n=10, 12, 14) were compared by means of surface tension and electrical conductivity measurements. The values of cmc, gamma(cmc), pc(20), Gamma(max), and A(min) derived from surface tension measurement at 25 degrees C suggest that the surface activity of [C(n)-4-C(n)im]Br(2) is higher than that of [C(n)mim]Br. While the thermodynamic parameters of micellization (DeltaG(m)(o), DeltaH(m)(o), DeltaS(m)(o)) derived from electrical conductivity indicate that the micellization of [C(n)-4-C(n)im]Br(2) is entropy-driven, aggregation of [C(n)mim]Br is entropy-driven at low temperature but enthalpy-driven at high temperature. Finally, the activation energy of conductance (E(a)) that is associated with the effective charge is also obtained for [C(n)-4-C(n)im]Br(2) and it is constant below the cmc, but it increases above the cmc.  相似文献   

16.
Micelle formation of N-(1,1-dihydroperfluorooctyl)-N,N,N- and N-(1,1-dihydroperfluorononyl)-N,N,N-trimethylammonium chloride was investigated by analyzing the concentration dependence of the electric conductivity and of the activity of the counterion (Cl(-)) of the solution. The three micellization parameters for ionic surfactants, the micellization constant K(n), the micelle aggregation number n, and the number of counterions per micelle m, were determined by combination of electric conductivity and counterion concentration. The present analysis employed two slopes of the plots of specific conductivity against surfactant concentration below and above the critical micelle concentration and the mass action model of micelle formation. The aggregation numbers thus obtained were relatively small, while the degrees of counterion binding to the micelle (m/n) were found to be quite large, much larger than expected from the small aggregation numbers. Thermodynamical parameters of the micellization were evaluated from the temperature dependence of the three parameters, and the micellization of the fluorinated surfactant was found to be enthalpy-driven. A CF(2) group in the perfluorocarbon chain was found to be 1.44 times larger in hydrophobicity for micellization than a CH(2) group in the hydrocarbon chain.  相似文献   

17.
A series of partially fluorinated cationic gemini surfactants and their corresponding monomeric surfactants have been studied by isothermal titration microcalorimetry. The critical micelle concentration (CMC) and enthalpy of micellization (DeltaH(mic)) were obtained from calorimetric curves. The CMCs of the gemini surfactants are much lower than those of the corresponding monomeric surfactants and decrease with an increase in the number of fluorine atoms on the hydrophobic chain. The micellization of partially fluorinated cationic gemini surfactants is much more exothermic than that of the corresponding monomeric surfactants. Because of the incompatibility of hydrocarbon spacer and partially fluorinated chain, DeltaH(mic) values of the surfactants with a C6 spacer are more negative than those of the surfactants with a C12 spacer. The variations in the architecture of the fluorocarbon chain segments may be the reason of the irregularities in the change of DeltaH(mic) for the gemini surfactants. Moreover, the contribution of the enthalpy generally increases with an increase in the number of fluorine atoms.  相似文献   

18.
19.
The demicellization of the cationic detergents dodecyltrimethylammonium bromide, tetradecyltrimetylammonium bromide, and cetyltrimethylammonium bromide was studied at temperatures between 20 and 60 degrees C in 0.1 M NaCl (pH 6.4) using isothermal titration calorimetry (ITC). We determined the critical micellization concentration (cmc) of the cationic detergents which show a minimum at temperatures between 20 and 34 degrees C. In accordance with the lengthening of the hydrophobic tail of the detergents the cmc decreases with increasing alkyl chain length. The thermodynamic parameters describing the changes of enthalpy (DeltaH(demic)), the changes of entropy (DeltaS(demic)) and the Gibbs free energy change (DeltaG(demic)) for demicellization were first obtained using the pseudophase-separation model. The aggregation number n at the cmc as well as the demicellization enthalpy, entropy and Gibbs free energy change were also calculated using a simulation based on the mass-action model. Furthermore, we investigated the demicellization of CTAB in deionized water in comparison to demicellization in sodium chloride solution to determine the influence of counter ion binding on the demicellization.  相似文献   

20.
A molecular-thermodynamic (MT) theory was developed to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. The theory was validated by comparing predicted and experimental cmc's of ternary surfactant mixtures, yielding results that were comparable to, and sometimes better than, the cmc's determined using regular solution theory. The theory was also used to model a commercial nonionic surfactant (Genapol UD-079), which was modeled as a mixture of 16 surfactant components. The predicted cmc agreed well with the experimental cmc, and the monomer concentration was predicted to increase significantly above the cmc. In addition, the monomer and the micelle compositions were predicted to vary significantly with surfactant concentration. These composition variations were rationalized in terms of competing steric and entropic effects and a micelle shape transition near the cmc. To understand the packing constraints imposed on ternary surfactant mixtures better, the maximum micelle radius was also examined theoretically. The MT theory presented here represents the first molecular-based theory of the micellization behavior of mixtures of three or more conventional surfactants. In article 2 of this series, the MT theory will be extended to model the micellization of mixtures of conventional and pH-sensitive surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号