首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在等离子体和其他物理实验中,常用低电感的螺线管产生磁场.角向收缩( -pinch)装置中用单匝线圈,高电压无极脉冲放电管的初级线圈也只有几匝.角收缩实验大都采用截面为 形的导体.多匝线圈往往就直接用一根导体绕几匝.这些简单的结构有些缺点,首先是对称性低,如单匝线圈沿圆周方  相似文献   

2.
为了满足闪光二号加速器材料热力学效应研究的新需求,设计了一套电容器储能型脉冲强磁场装置。装置主要由储能电容器、半导体放电开关、磁场线圈及高压恒流充电源组成。磁场线圈中心处最大磁感应强度可达5 T,并且可以通过调整磁场线圈与二极管的相对位置实现磁透镜比的调节。通过理论计算和数值模拟相结合的方法对脉冲强磁场的关键参数进行了分析,然后进行了脉冲强磁场的工程设计,最后使用该强磁场装置进行了实验研究。强磁场实验中,当储能电容器充电21 kV时,在磁场线圈中心处获得了5.3 T脉冲强磁场。  相似文献   

3.
基于磁场闪络抑制技术的真空沿面闪络实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为解决脉冲功率系统中击穿电压最低的部分,即真空固体绝缘界面,采用磁场闪络抑制技术提高闪络电压,为研究磁场和沿面闪络电压的关系,针对不同介电常数的样品开展了一系列相关实验。实验结果表明:采用电容器对通电螺线管充电产生的脉冲强磁场稳定可靠,并且当施加在绝缘子表面磁场强度为1.1 T时,PMMA材料的闪络电压可以提高至1.8倍。  相似文献   

4.
激光烧蚀等离子体(LAP)可用作粒子加速器和离子注入器中使用的离子源。相较于其它离子源,激光离子源在流强上具有优势,但由于产生的离子束脉冲时间短,限制了其在加速器中的广泛应用。实验中通过对激光等离子体扩散区域引入螺线管磁场进行约束,实现了对激光等离子体脉冲时间结构的调制。为了研究螺线管磁场对LAP的影响,实验使用了不同的激光能量(1~8 J)来生产具有不同初始条件的激光等离子体,并应用了不同的磁场强度来约束激光等离子体。在螺线管边缘场,通过可移动的法拉第筒(FC)对激光等离子体的横向分布进行测量。对于不同初始状态的等离子体,随着磁场的增加,其离子脉冲的主要参数(脉冲总电荷量、峰值流强、脉宽)均呈现先上升后逐渐饱和的变化趋势。另外,在没有磁场的条件下,在所测量位置处,等离子体的横向呈均匀分布;而在磁场约束的条件下,等离子体明显向轴线聚集。以上实验结果对进一步了解磁约束激光等离子体的特性具有重要意义。  相似文献   

5.
空间环境地面模拟装置是哈尔滨工业大学承建的国家重大科技基础设施项目,其包含的空间等离子体环境模拟与研究系统是用于提供磁重联过程等基本物理过程的时空演化规律研究的平台。在研究地球磁尾三维磁重联时,使用处于真空环境内的偶极磁场线圈和两个磁镜场线圈来提供研究所需的模拟背景磁场,其中偶极场线圈为一个总电感为17.4 mH、总电阻为30.25 mΩ的单个线圈,而磁镜场线圈为两个线圈镜像对称设置并串联连接,总电感30.16 mH,总电阻58.81 mΩ。为了产生实验所需背景磁场的幅值和持续时间,研制并测试了两套总能量3.36 MJ的脉冲电源,在进行地球磁尾三维磁重联实验时两套电源需要同时工作。用于驱动偶极场线圈的脉冲电源按照实验需求可以在充电压不大于20 kV的情况下,能够提供超过9 kA的峰值电流,95%峰值电流的持续时间超过了5 ms,由峰值时刻降低到10%峰值时刻的时间不超过130 ms;用于驱动磁镜场线圈的脉冲电源按照实验需求可以在充电压不大于20 kV的情况下,能够提供超过8 kA峰的值电流,95%峰值电流的持续时间超过了5 ms,由峰值时刻降低到10%峰值时刻的时间不超过130 ms。  相似文献   

6.
 介绍了螺旋线型空芯脉冲变压器的基本理论及设计中的关键技术,设计了一台高变比螺旋线型空芯脉冲变压器,此空芯变压器初级为紫铜皮沿绝缘外筒内壁螺旋绕制三匝,次级为锥形高压绕组,约1 800匝。其初级充电电压只需要几kV,因此初级开关采用可控硅,而不需要晶闸管,这样将使初级回路及初级电容体积大大减小。 对设计的空芯变压器进行了模拟计算和实验研究, 实验结果表明: 在初级储能电容充电为2 400 V时,变压器次级所接形成线负载的输出电压达到900 kV,充电时间约为32.6 μs。  相似文献   

7.
65T脉冲强磁体设计与实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
研制并实验测试一台65T脉冲强磁场磁体。磁体线圈采用14层纯铜导线与Zylon纤维交替缠绕而成,内绕组采用分布式加固技术,实现应力分布的优化,外层由不锈钢套筒与碳纤维加固。内外绕组分别采用两种不同横截面导线平衡能量分布,实现内外绕组温度分布相对均匀,避免局部过热。磁体孔径为12mm,高为120mm,通过1MJ/3.2mF/25kV高储能密度电容器供电,在20.6kV电压时,获得了磁感应强度为65T、持续时间为20ms的脉冲磁场。  相似文献   

8.
1.5特斯拉脉冲磁场装置的研制   总被引:4,自引:4,他引:0  
本文介绍了用于控制强流相对论电子束能通量密度和均匀性的脉冲磁场装置。该装置由磁场电源、磁场线圈及电子束漂移管等组成。脉冲磁场是由储能电容器通过六个触发真空开关对线圈放电产生的。电容器总储能为180kJ,最大充电电压为10.0kV,脉冲磁场上升前沿约为8.38ms。在充电电压为7.0kV时,测得磁感应强度为1.81T。本文还对不同靶材料对磁感应强度分布的影响进行了研究,并简单介绍了主机与磁场的同步装置。脉冲磁场装置已用于闪光Ⅱ号加速器中,经过上百炮运行证明其工作比较可靠,并达到了控制电子束能通量密度和改善束均匀性的目的。  相似文献   

9.
为了研究θ-收缩(θ-pinch)等离 子体的物理性质,发展快脉冲、高电压 储能放电技术和各种高温等离子体诊 断技术,设计和建造了十万焦耳直线型θ-收缩实验装置.单匝线圈的内径为8.2厘米,长20匣米,装置的主要参数是:电容量乃微法拉,最高充电电压50千伏,最大峰值电流1.6兆安培,最大峰值磁场82千高斯,最大磁场上升率 4 ×10~(10)高斯/秒,半周期 6.5微秒,能量转换效率~50%.另外还有450千周的预电离与±3.5干高斯的偏磁场电容器组.在初步的实验中,进行了D-D聚变反应中子的探测、高速扫描照相、内部磁探针测量、用软X-射线吸收比较法测量电子温…  相似文献   

10.
150kV/1 kHz可调脉宽电晕等离子体驱动源   总被引:4,自引:4,他引:0       下载免费PDF全文
建立了重复频率、可调脉宽线板放电型电晕等离子体驱动源实验平台,该平台由谐振充电、脉冲升压变压器和磁开关宽脉冲调制等部分构成,试验平台输出脉冲电压峰值150 kV、最高重复频率1 kHz、输出脉冲前沿0.53μs、脉冲宽度5~25μs可调节。阐述了该平台脉冲调制原理,通过实验结果分析了脉冲变压器分布电容对系统能量传输的影响,指出提高脉冲氢闸流管开关能力、改善脉冲变压器绝缘结构设计、降低匝间分布电容可以进一步提高输出电压和重复频率。  相似文献   

11.
 建立了精确的激光触发变压器型脉冲调制器的同步触发系统。分别对脉冲调制器初级电脉冲触发控制信号与电脉冲输出时刻之间、变压器充电起始时刻与激光器Q开关触发信号之间、激光信号与脉冲调制器放电时刻之间的延时进行了测量,并分析其相互间时序关系;通过对变压器输出电压信号进行采样滤波后,利用比较器输出逻辑门电路(TTL)信号作为激光器Q开关触发信号,实现了脉冲形成线充电时间与激光触发主开关放电过程的同步控制。开展了激光触发脉冲功率调制器主开关的实验研究,在形成线充电电压-590 kV时,在假负载上得到-305 kV,20 kA的电脉冲,脉冲宽度126 ns,激光到达主开关时刻与开关导通时刻间延时35 ns。  相似文献   

12.
《物理》2016,(1)
脉冲强磁场是现代科学研究的重要工具,因其可以较容易地实现50 T以上磁场,因而在最近20年快速发展。最高磁场强度已经由70 T左右发展到目前的100 T,磁场波形也由以前单一的短脉冲发展到现在的长脉冲、平顶脉冲、长短合成脉冲等多种波形。随着电源与控制技术的发展,脉冲强磁场技术也在一定时间内实现了高稳定度磁场,拓宽了脉冲强磁场的实用范围;同时,脉冲磁体技术发展催生出能快速冷却的、具有高重频和异形结构的脉冲磁体,以满足X射线实验、中子实验和太赫兹实验要求。文章详细介绍了脉冲强磁场技术的发展现状与发展趋势,还介绍了武汉国家脉冲强磁场科学中心的磁场技术。  相似文献   

13.
建立了精确的激光触发变压器型脉冲调制器的同步触发系统。分别对脉冲调制器初级电脉冲触发控制信号与电脉冲输出时刻之间、变压器充电起始时刻与激光器Q开关触发信号之间、激光信号与脉冲调制器放电时刻之间的延时进行了测量,并分析其相互间时序关系;通过对变压器输出电压信号进行采样滤波后,利用比较器输出逻辑门电路(TTL)信号作为激光器Q开关触发信号,实现了脉冲形成线充电时间与激光触发主开关放电过程的同步控制。开展了激光触发脉冲功率调制器主开关的实验研究,在形成线充电电压-590 kV时,在假负载上得到-305 kV,20 kA的电脉冲,脉冲宽度126 ns,激光到达主开关时刻与开关导通时刻间延时35 ns。  相似文献   

14.
完成了小型方波脉冲磁场装置的双线圈负载设计,在一定区域内获得了近似匀强磁场。采用阻抗2 的6级脉冲形成网络作为初级储能和脉冲形成单元,对匹配电阻放电产生了方波脉冲电流波形。研制了一种场畸变气体火花间隙作为主放电开关,有效减小了装置的动作时延和分散性。实验结果表明:负载中心峰值磁感应强度达到0.04 T,方波磁场平顶时间约3 s,平顶度小于5%,上升前沿(磁感应强度峰值10%~90%)小于0.5s,装置的动作时延抖动小于10 ns(标准偏差)。  相似文献   

15.
利用脉宽调制技术,设计了一台为高功率微波源提供导引磁场的脉宽调制型励磁电源,它可在励磁线圈中产生一定持续时间的准稳态强磁场。励磁电源的储能部分采用容量15 F、最高充电电压800 V的储能密度较高的超级电容器,最大储能为4.8 MJ,内阻小于0.25Ω。在储能电容充电645 V的情况下,对电感约为60 mH、电阻约0.40Ω的励磁线圈进行了励磁实验,获得了持续时间为1.9 s、幅值为900 A准稳态电流,电流波动幅度为5%,对应线圈中的最大轴向磁场为2.2 T。实验结果与理论计算基本一致,表明所研制的励磁电源达到了设计要求。  相似文献   

16.
光导开关级联Blumlein型脉冲网络设计   总被引:2,自引:2,他引:0       下载免费PDF全文
为了驱动重复频率运行高阻抗X光管,设计了基于光导开关的级联Blumlein型脉冲形成网络。采用数值模拟方法优化网络参数,从网络充电电压一致性、输出脉冲波形畸变、电压叠加效率、负载预脉冲幅值出发确定了充电电感和支撑电感设计原则。实验表明:光导开关工作场强23.2 kV/cm,激光触发能量3.5 mJ时,阻抗约15.6 的Blumlein型脉冲形成网络电压转换效率为0.71,2级级联网络电压叠加效率0.96。  相似文献   

17.
为开展L波段低阻无箔渡越辐射高功率微波发生器的单次实验,设计了一种满足需要的电容器储能脉冲磁场系统。系统储能电容5.4 mF,设计的螺线管线圈长45 cm,其理论电感和电阻值分别为42 mH和0.66 。基于该设计,绕制了磁场线圈并搭建了实验平台,线圈实际电感和电阻值分别为40 mH和0.61 。目击靶实验进一步证实了励磁系统产生的导引磁场能够较好地约束电子束。  相似文献   

18.
提出了一种基于Tesla变压器且带触发网络的多重火花间隙触发器设计方案。阐述了多重火花间隙在直流和脉冲信号下电压分布特性,并给出了其在脉冲电压作用下电压分布的主要影响因素。仿真分析了触发频率、分压电容和均压电阻对多重火花间隙电压分布的影响,确定了触发网络的最佳参数配置。以10级火花间隙为例,从触发器设计三要素,即脉冲陡度、输出幅值、带载能力出发,确定了Tesla型脉冲触发器的关键设计参数,当脉冲变压器的耦合系数为0.7,初级电感为2500 nH,次级电感为400 mH,初级电容为60F,初级电容充电电压为2.0 kV时,次级直接输出的触发高压可实现10级火花间隙的触发导通。结合多重火花间隙导通实验,对作用于多重火花间隙的触发器的工作过程进行实验验证。  相似文献   

19.
基于Marx发生器原理设计了150kV脉冲X射线测试系统,该系统采用正负极充电的双边Marx发生器线路,Marx发生器设计为15级同轴结构,采用紧凑低电感设计来获得窄脉冲的输出。实验结果表明,X光机设计合理,获得了窄脉宽、高幅度的高压脉冲输出:在充电电压为20kV的情况下,X射线管电压150kV;X射线脉宽约60ns;25cm处剂量约7.8×10-6 C/kg;焦斑直径2.5mm。搭配计算机X射线摄影系统,成像面积可达30cm×40cm,分辨力大于1lp/mm,可以满足一般低能闪光照相的需要。  相似文献   

20.
为了抑制丝阵Z箍缩单丝电爆炸过程产生的核冕结构,分析了激光探针诊断的物理内涵,并基于约30 ps激光探针研究了负极性快前沿脉冲(90—170 A/ns)下铝丝的电爆炸特性.直径15μm,长2 cm的铝丝,阻性电压峰值为35—50 kV,电压击穿前金属丝电阻率增加至30—40μΩ·cm.电压峰值时刻沉积能量为1.5—2.5 eV/atom,欧姆加热功率下降至峰值一半时的沉积能量为2.5—4.0 eV/atom,接近铝丝从室温加热至完全气化所需的能量约4.0 eV/atom.快前沿脉冲可增加金属中的欧姆能量沉积速度,提高负载击穿电压.激光纹影图像可以观察到气体通道和等离子体通道,得到冕等离子体的平均电离度约为0.3.由于极性效应,电极附近区域的能量沉积超过负载中部区域,电极附近负载基本完全气化,而负载中部区域仍存在液态或团簇状颗粒.一些发次中,实现了轴向均匀且完全气化的铝蒸气,在电压击穿后的约127 ns,70%的初始质量分布在直径1 mm的区域内,100%的初始质量分布在直径2 mm的区域内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号