首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自旋电子学和计算机硬件产业   总被引:1,自引:0,他引:1  
赖武彦 《物理》2002,31(7):437-443
1988年发现的巨磁电阻(GMR)效应,是基于自旋的新电子学的开始.文章介绍观察效应的物理基础,以及这些效应和材料在信息存储上的应用.GMR硬盘(HDD)已经形成了数十亿美元的工业;其后发现的室温隧道磁电阻(TMR)效应已用于制造新的磁随机存储器(MRAM),它正在开创另一个数十亿美元的工业.自旋电子学研究的物理对象是自旋向上和自旋向下的载流子,而传统半导体电子学的对象是电荷为正和电荷为负的载流子,即空穴和电子.电子自旋特性进入半导体电子学,为新的器件创造了机会.为了成功地将电子自旋结合到半导体微电子技术中去,需要解决磁性原子自旋极化状态的控制,以及自旋极化载流子电流的有效注入、传输、控制、操纵和检测.评述了基于电子自旋的新器件原理、新材料的探索以及自旋相干态的光学操纵.  相似文献   

2.
人为操控电子的内禀自由度是现代电子器件的核心和关键.如今电子的电荷和自旋自由度已经被广泛地应用于逻辑计算与信息存储.以二维过渡金属硫属化合物为代表的二维原子层材料由于其具有独特的谷自由度和优异的物理性质,成为了新型谷电子学器件研究的优选材料体系.本文介绍了能谷的基本概念、谷材料的基本物理性质、谷效应的调控和谷电子学器件的研究进展,并对谷电子学材料和器件的研究进行了总结与展望.  相似文献   

3.
二维材料中由贝里曲率诱导的新型磁学响应是近年来的新兴领域.这些二维材料所表现出的磁学特性及量子输运与贝里曲率直接相关,而贝里曲率又与晶体的对称性、电子的轨道磁性、自旋轨道耦合以及磁电效应等息息相关.研究这些新型磁性响应一方面有益于研究不同量子效应间的耦合作用,另一方面可探索量子效应在电子与信息器件领域的应用.本文介绍了近几年来二维材料中新型磁响应的实验研究进展,特别介绍了二硫化钼和石墨烯等材料中的谷霍尔和磁电效应、低对称性的二碲化钨等材料中的量子非线性霍尔以及转角石墨烯中的反常霍尔和量子反常霍尔效应.本文结合二维材料的晶体结构以及电子结构,介绍了这些新奇现象的现有物理解释、回顾了相关研究的最新发展、讨论了其中尚未理解的现象,并作出展望.  相似文献   

4.
自旋电子学和计算机硬件产业   总被引:1,自引:0,他引:1  
赖武彦 《物理》2002,31(7):437-443
1988年发现巨磁电阻(GMR)效应,是基于自旋的新电子学的开始。文章介绍观察效应的物理基础,以及这些效应和材料在信息存储上的应用。GMR硬盘(HDD)已经形成了数十亿美元的工业;其后发现的室温隧道磁电阻(TMR)效应已用于制造新关磁随机存储器(MRAM),它正在开创另一个数十亿美元的工业。自旋电子学研究的物理对象是自旋向上和自旋向下的载流子,而传统半导体电子学的对象是电荷为正和电荷为负的载流子,即空穴和电子。电子自旋特性进入半导体电子学,为新的器件创造了机会。为了成功地将电子自旋结合到半导体微电子技术中去,需要解决磁性原子自旋极化状态的控制,以及自旋极化载流子电流的有效注入、传输、控制、操纵和检测。评述了基于电子自旋的新器件原理、新材料的探索以及自旋相干态的光学操纵。  相似文献   

5.
紫磷烯是一种结构稳定且具有优异光电特性的新型二维材料,研究掺杂效应有助于理解其物理本质,对进一步开发纳米电子器件具有重要意义.本文采用基于密度泛函理论的第一性原理方法,研究了非金属元素B,C,N,O掺杂单层紫磷烯的电磁性质.计算结果表明,B和N掺杂之后没有产生磁性,体系依旧表现为非磁性半导体;而C和O掺杂导致体系发生自旋劈裂,紫磷烯由非磁性半导体转变成为双极磁性半导体,其自旋密度主要分布在磷原子和间隙区域内而非杂原子上.电场调控氧掺杂紫磷烯可使其载流子的自旋极化方向发生反转,当施加一定大小的正向或反向的静电场时,能带色散程度变强,氧掺杂紫磷烯转变成100%自旋极化向下或向上的单自旋半金属磁体.基于氧掺杂紫磷烯材料设计的场效应自旋滤通器可利用改变门电压方向的方法实现电流自旋极化方向的反转,表明氧掺杂紫磷烯有望成为二维自旋场效应晶体管、双极磁性自旋电子学器件、双通道场效应自旋滤通器以及场效应自旋阀的理想候选材料.  相似文献   

6.
张新成  廖文虎  左敏 《物理学报》2018,67(10):107101-107101
基于紧束缚近似下的低能有效哈密顿模型和久保线性响应理论,研究了外部非共振圆偏振光作用下单层二硫化钼(MoS_2)电子结构及其自旋/谷输运性质.研究结果表明:单层MoS_2布里渊区K谷和K′谷附近自旋依赖子带间的能隙随着非共振右旋圆偏振光引起的有效耦合能分别线性增大和先减小后增大,随着非共振左旋圆偏振光引起的有效耦合能分别先减小后增大和线性增大,实现了系统能带结构有趣的半导体-半金属-半导体转变.此外,单层MoS_2在外部非共振圆偏振光作用下,呈现有趣的量子化横向霍尔电导和自旋/谷霍尔电导,自旋极化率在非共振右/左旋圆偏振光有效耦合能±0.79 eV附近达到最大并发生由正到负或由负到正的急剧转变,谷极化率随着非共振圆偏振光有效耦合能先增大后减小并在其绝对值0.79-0.87 eV范围内达到100%.因而,可以利用外部非共振圆偏振光将单层MoS_2调制成自旋/谷以及光电特性优异的新带隙材料.  相似文献   

7.
稀磁半导体--自旋和电荷的桥梁   总被引:5,自引:0,他引:5  
常凯  夏建白 《物理》2004,33(6):414-418
稀磁半导体可能同时利用载流子的自旋和电荷自由度构造将磁、电集于一体的半导体器件.尤其是铁磁半导体材料的出现带动了半导体自旋电子学的发展.室温铁磁半导体材料的制备,半导体材料中有效的自旋注入,以及自旋在半导体结构中输运和操作已成为目前半导体自旋电子学领域中的热门课题.稀磁半导体呈现出强烈的自旋相关的光学性质和输运性质,这些效应为人们制备半导体自旋电子学器件提供了物理基础.  相似文献   

8.
基于光子的自旋霍尔效应,超表面可用于光束的产生和控制。本文基于旋转变换利用一维纳米孔链设计了二维纳米孔旋转对称超表面。利用此样品,可以由左旋圆偏振(LCP)和右旋圆偏振(RCP)光的自旋霍尔效应同时产生贝塞尔光束。利用线偏振光激发,通过控制两个圆偏振光激发光束之间的相干干涉可动态调控贝塞尔光束的强度和偏振。同时,此方法还具有宽带调制的优点。  相似文献   

9.
利用非平衡格林函数方法理论研究了光场和电场对锡烯纳米带自旋相关热电效应的影响.研究表明,热电电流的性质和强度可以通过圆偏振光场的强度和偏振化方向进行有效调控.在较强的左旋圆偏振光场和电场的共同作用下,锡烯自旋向下的边缘态发生相变形成带隙,通过温度梯度的驱动可以获得100%极化的自旋向下的自旋流.当施加右旋偏振光时,自旋向上的边缘态被破坏,可以产生完全极化的自旋向上的热自旋流.在较弱的外场作用下,边缘态的性质不发生改变,系统不对外输出热电电流.此外,研究表明热自旋流的大小与带隙的宽度有关,适度地增加温度可以显著增大热自旋流的峰值,但是较高的平衡温度和温度梯度将抑制自旋热电效应.  相似文献   

10.
王辉  胡贵超  任俊峰 《物理学报》2011,60(12):127201-127201
基于紧束缚模型和格林函数方法,研究了有机磁体晶格扰动和侧基自旋取向扰动对金属/有机磁体/金属三明治结构有机自旋器件自旋极化输运特性的影响.计算结果表明:晶格扰动的存在降低了器件的起始偏压,减小了导通电流,并使得电流-电压曲线的量子台阶效应不再显著,扰动不太强时电流仍呈现较高的自旋极化率;而侧基自旋取向扰动减小了体系的自旋劈裂,增加了器件的起始偏压,低偏压下随着扰动的增强器件电流及其自旋极化率明显降低.进一步模拟了温度对器件自旋极化输运的影响. 关键词: 有机自旋电子学 有机磁体 自旋极化输运 自旋过滤  相似文献   

11.
邓富胜  孙勇  刘艳红  董丽娟  石云龙 《物理学报》2017,66(14):144204-144204
将石墨烯中赝磁场的产生机理运用于光子石墨烯,通过在光子石墨烯中引入晶格有规律单轴形变的方式,理论分析得到了谷依赖的均匀赝磁场,并通过数值模拟的方法观察到明显的谷霍尔效应.这种谷霍尔效应的显著程度随晶格形变度的增加而加强.在具有一定损耗的电介质材料构成的形变光子石墨烯中仍可观察到明显的谷霍尔效应.随着电介质材料损耗的增加,谷霍尔效应导致的波束转弯效果依然能够保持,只是强度逐渐变弱.类似于自旋电子学中的自旋霍尔效应,这种光子石墨烯中等效赝磁场作用下的谷霍尔效应在未来谷极化器件的设计和应用中具有重要意义.  相似文献   

12.
热自旋电子学器件结合了自旋电子学和热电子学各自的优点,对人类可持续发展具有重要作用.本文研究了锯齿形BN纳米带(ZBNRs)共价功能化碳纳米管(SWCNT)的电子结构,发现ZBNRs-B-(6,6)SWCNT为磁性半金属,nZBNRs-B-(6,6)SWCNT(n=2—8)为磁性金属;nZBNRs-N-(6,6)SWCNT(n=1—8)为双极化铁磁半导体;4ZBNRs-B-(4,4)SWCNT和4ZBNRs-N-(4,4)SWCNT为磁性半金属,4ZBNRs-B-(m,m)SWCNT(m=5—9)为磁性金属;4ZBNRs-N-(m,m)SWCNT(m=5—9)为双极化铁磁半导体.然后,基于锯齿形BN纳米带共价功能化碳纳米管设计了新型热自旋电子学器件,发现基于ZBNRs-N-(6,6)SWCNT的器件具有热自旋过滤效应;而8ZBNRs-N-(6,6)SWCNT和nZBNRs-B-(6,6)SWCNT(n=1,8)都存在自旋相关塞贝克效应.这些发现表明BN纳米带功能化碳纳米管在热自旋电子学器件方面具有潜在的应用.  相似文献   

13.
采用黄金定则方法和Kane六能带模型,分析了半导体中的量子干涉控制光生电流效应.计算了不同偏振光场下载流子在动量空间的初始布居分布,从微观上阐明了相干电流对光场的偏振依赖特性.在平行线偏振情况下,相干电流方向沿光场的偏振方向;而在正交线偏振情况下,电流方向与倍频光的偏振方向相同.还证明了只有当单光子跃迁和双光子跃迁相平衡时才能获得最大的电流注入效率. 关键词: 量子干涉 光电流 线偏振光  相似文献   

14.
韩秀峰  张佳 《物理》2011,40(1):42-43
伦敦大学物理系的Matthias Eschriga博士最近在Physics Today杂志上撰写了一篇关于自旋极化超导电流理论和实验研究进展的综述文章,并在文中指出了自旋极化超导电流进一步的发展方向及其在自旋电子学器件中的可能应用.当温度降低时,超  相似文献   

15.
任俊峰  付吉永  刘德胜  解士杰 《物理学报》2004,53(11):3814-3817
根据自旋注入半导体的相关理论, 考虑到有机体内可能同时含有带自旋的单极化子和不带自旋的双极化子两种载流子,从扩散 理论和欧姆定律出发,建立了自旋注入有机体的唯象模型.通过计算发现,适当选择铁磁层极化率或两层的电导率可以使得有机层内电流具有高的自旋极化.进一步研究了单极化子浓度等因素对注入电流极化的影响. 关键词: 自旋电子学 自旋注入 有机聚合物 极化子  相似文献   

16.
偏振光探测在遥感成像、环境监测、医疗检测和军事设备等领域都具有很好的应用价值,目前已经有一系列偏振探测和成像产品.随着信息器件进一步小型化、集成化,基于新型低维材料的偏振光探测器可以直接利用材料本征的各向异性对偏振光进行感知,在未来偏振光探测领域有很好的应用前景.很多二维/一维半导体材料,例如:黑磷, ReS_2, GaTe, GeSe, GeAs及ZrS_3等,都具有较强的本征面内各向异性,可以用于高性能偏振光探测器.基于此类低维半导体材料设计的不同结构类型的偏振光探测器已经覆盖了紫外、可见以及红外等多个波段.本文总结了近年来相关领域的研究进展和我们课题组的一些工作.  相似文献   

17.
《物理》2017,(5)
电子的电荷自由度与自旋自由度是现代电子器件的基础核心之一。随着二维材料,尤其是二维过渡族硫化物(TMDCs)的研究深入,另一个自由度——能谷——也引起了人们极大的研究兴趣。由于TMDCs中自旋与能谷的强耦合,自旋(能谷)可以通过能谷(自旋)方便地进行调控和探测,为电子自旋和能谷的相关领域提供了新的手段和方法。文章首先对能谷自由度以及TMDCs中自旋与能谷的强耦合进行了介绍,然后介绍基于圆偏振光激发和自旋注入两种方式进行的自旋调控和探测的理论和实验工作,最后对基于能谷的自旋调控进行了总结和展望。  相似文献   

18.
简要介绍磁电子学的基本概念、研究对象、应用背景.重点介绍自旋极化电子在人工结构材料中的一些特殊输运性质,例如,巨磁电阻效应、磁隧道效应、自旋极化电子的注入效应、沟道效应,以及依据这些效应和特性做成的各种新型电子器件的原理,例如,计算机磁头、磁随机存储器(MRAM)、自旋开关三极管、铁电场效应三极管、电流放大器和逻辑元件等.  相似文献   

19.
采用时间分辨圆偏振光抽运-探测光谱,研究9.6 K温度下本征GaAs中电子自旋相干弛豫动力学,发现反映电子自旋相干的吸收量子拍的振幅随光子能量的增加呈非单调性变化.考虑自旋极化依赖的带填充效应和带隙重整化效应,发展了圆偏振光抽运-探测光谱的理论模型.该模型表明量子拍的振幅依赖于所探测能级的电子初始自旋极化度,自旋探测灵敏度以及带填充因子,三者的乘积导致了量子拍振幅的非单调变化,与实验结果一致.给出了能级分裂的二能级系统中电子自旋极化度定义.发现在高能级上可以获得100%的初始电子自旋极化度. 关键词: 圆偏振光抽运-探测光谱 吸收量子拍 电子自旋极化度 GaAs  相似文献   

20.
分析了极化碱金属气室的旋光特性,极化的原子气室宏观上可等效为一种法拉第旋光晶体,其旋光系数与原子自旋进动相关。提出了采用圆偏振探测光测量通过气室的左右旋圆偏振光相位差来实现原子自旋进动检测的思路。基于改进的全光纤反射型Sagnac干涉仪,搭建了光纤原子自旋进动检测系统,通过圆偏振探测光实现了无自旋交换弛豫态自旋进动信号的检测。在原子自旋陀螺仪实验平台上进行了实验验证并实现了陀螺效应,实验结果证明了所提理论的正确性。对陀螺性能进行了初步测试,得到其零偏不稳定性为0.29(°)/h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号