首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用分子动力学模拟方法研究了黑索金(RDX)在冲击作用下的分解机理, 研究结果表明RDX初始分解机理主要为N-N键的断裂形成NO2分子, 然后发生比N-N键断裂更为强烈的C-N键断裂反应形成N2, CO和CO2分子; 在恒定温度(如300K)下,冲击速度增大对加快反应影响不大, 说明高温热点的形成对起爆的重要性.  相似文献   

2.
应用分子动力学模拟方法研究了黑索金(RDX)在冲击作用下的分解机理,研究结果表明RDX初始分解机理主要为N-N键的断裂形成NO2分子,然后发生比N-N键断裂更为强烈的C-N键断裂反应形成N2,CO和CO2分子;在恒定温度(如300K)下,冲击速度增大对加快反应影响不大,说明高温热点的形成对起爆的重要性.  相似文献   

3.
彭亚晶  蒋艳雪 《物理学报》2015,64(24):243102-243102
含能材料中的微观缺陷是导致“热点”形成并相继引发爆轰的重要因素. 然而, 由于目前人们对材料内部微观缺陷的认识不足, 限制了对含能材料中“热点”形成微观机理的理解, 进而阻碍了含能材料的发展和应用. 为了洞悉含能材料内部微观缺陷特性及探索缺陷引发“热点”的形成机理, 利用第一性原理方法研究了分子空位缺陷对环三亚甲基三硝胺(RDX) 含能材料的几何结构、电子结构及振动特性的影响, 探讨了微观缺陷对初始“热点”形成的基本机理. 采用周期性模型分析了分子空位缺陷对RDX几何结构、电子能带结构、电子态密度及前线分子轨道的影响. 采用团簇模型分析了分子空位缺陷对RDX振动特性的影响. 结果发现, 分子空位缺陷的存在使其附近的N–N键变长, 分子结构变得松弛; 使导带中很多简并的能级发生分离, 电子态密度减小, 并使由N-2p和O-2p轨道形成的导带底和价带顶均向费米面方向移动, 降低了能带隙值, 增加了体系活性. 前线分子轨道及红外振动光谱的计算分析表明, 分子缺陷使最高已占分子轨道电荷主要集中在缺陷附近的分子上, 且分子中C–H键和N–N键能减弱. 这些特性表明, 分子空位缺陷的存在使体系能带隙变小, 并使缺陷附近的分子结构松弛, 电荷分布增多, 反应活性增强; 在外界能量激发下, 缺陷附近分子将变得不稳定, 分子中的C–H键或N–N键较易先发生断裂, 发生化学反应释放能量, 进而成为形成“热点”的根源.  相似文献   

4.
理解含能材料的物理化学性质、爆轰性能及分解机制,对于含能材料的分子设计、安全性评估及实际应用有着重要的指导意义。第一性原理分子动力学不但可以研究含能材料的物理化学性质,还可以用于研究含能材料的分解反应过程。本文综述了当前第一性原理分子动力学模拟含能材料的理论研究进展。首先讨论了含能材料的晶体结构和基本性质,如热学、力学、电学性质和结构的温度、压力效应。随后讨论了含能材料常压下单分子分解行为,侧重讨论了常压下含能材料的热解产物、热解机制及热解反应的动力学性质,其中含能材料的热解起始反应机制主要包括质子转移、C—N键断裂和N—NO2键断裂3种方式。同时,还对静水压、冲击波等加载条件对含能材料热解反应的影响进行了讨论,尤其是冲击波加载可能带来新的反应机制,如C—H键的断裂。  相似文献   

5.
应用分子动力学模拟方法研究了黑索金(RDX)在纯高温下的分解机理, 研究结果表明RDX初始分解机理主要为N-N键的断裂形成NO2分子, 然后发生H原子转移反应形成H2O, HONO, HO和NO分子; 通过对RDX热分解反应物和生成物的研究结果表明N2和H2O分子是RDX分解过程中最稳定的生成物, NO2, HNO3, NO, NO3和HONO分子为RDX热分解过程中的中间产物; 在高温4500K, CO, CO2和OH分子出现的频率逐渐提高, 表明这几种分子在高温下更容易形成.  相似文献   

6.
应用分子动力学模拟方法研究了黑索金(RDX)在纯高温下的分解机理, 研究结果表明RDX初始分解机理主要为N-N键的断裂形成NO2分子, 然后发生H原子转移反应形成H2O, HONO, HO和NO分子; 通过对RDX热分解反应物和生成物的研究结果表明N2和H2O分子是RDX分解过程中最稳定的生成物, NO2, HNO3, NO, NO3和HONO分子为RDX热分解过程中的中间产物; 在高温4500K, CO, CO2和OH分子出现的频率逐渐提高, 表明这几种分子在高温下更容易形成.  相似文献   

7.
利用小型化桌面式脉冲激光驱动冲击波可实现材料的快速动态加载,具有成本低、实验重复频率高、加载速率超高等特点。介绍了桌面式激光驱动冲击技术的研究工作,以及该技术在含能材料冲击点火分子反应机制研究中的应用。目前已搭建的纳秒激光驱动冲击波实验系统可以实现上升时间仅为几纳秒、峰值压力不小于2 GPa的超快动态加载,并发展了相应的冲击特性表征技术。利用该实验系统,研究了典型含能材料RDX的冲击感度,发现冲击高压导致的分子内电荷转移是影响材料感度的关键因素,高压下RDX分子杂环上的电子向NO2转移并导致硝基的反应感度增加。该研究成果为认识RDX的冲击反应机制提供了一定的实验依据。通过现有的以及即将开展的工作,希望能够建立一套完整的技术手段,为从分子层次上研究含能材料的冲击反应机理提供实验支持。  相似文献   

8.
本文首先通过量子分子动力学方法结合多尺度冲击技术研究固相TNT晶体在冲击波加载下的初始分解反应路径及其产物组分变化.通过综合分析键长变化、电子布居和中间产物的存在寿命三个要素给出了不同冲击波速(3-15 km/s)下2类可能的初始分解路径:在低速冲击下(≤7 km/s),TNT发生部分分解和聚合,分解主要源于C-NO2键的断裂,初始分解产物以NO2为主;在高速冲击下(≥9 km/s)则发生完全分解,分解主要始于六元环的形成,即NO2基团上的O与相邻CH3基团上的H相结合,然后六元环被打破,生成了OH自由基,初始分解产物以CN、CO、C2和OH为主.另外,根据模拟数据我们从理论上给出了TNT(ρ0=1.7 g/cm~3)冲击Hugoniot关系为Us=3.377+1.363 u.随后以分子光谱理论为基础,采用含时密度泛函理论获取这些主要分解产物的紫外可见吸收谱、荧光发射谱及振动分辨的荧光发射谱.此项研究有助于我们深入认识TNT高温高压状...  相似文献   

9.
研究气相CL-20炸药的反应机理及能量释放规律,有助于认识极端条件下含能材料的冲击点火和爆轰等过程。采用反应分子动力学计算方法,研究不同密度和温度下,气相CL-20热分解反应过程。结果表明气相状态时,其初始反应路径为CL-20单分子的N-NO2键断裂生成硝基自由基;第二阶段反应路径为C-C键、C-N键和N-N键等的断裂与生成,发生了质子转移和开环、闭环等基元反应,形成HCN、N2O2、HONO、NO等中间产物;第三阶段反应路径为N2,CO2,H2O和CO等最终稳定产物生成,且生成中间产物的基元反应数量远大于N2、H2O等最终产物生成的基元反应数量。此外,密度和温度还影响了高温下产物的反应速率常数。  相似文献   

10.
原位红外光谱法是一种新兴的动态研究方法。该方法具有原位实时监控和红外光谱精确分析物质化学结构的优点,能够实时跟踪材料在不同温度下的化学变化,测定材料的微观结构与温度的关系。采用原位漫反射红外光谱研究了炸药1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(HMX)分别在每min 5, 10, 20和40 ℃四种不同升温速率下的热分解行为。研究结果表明:在5 ℃·min-1升温速率下,断裂的HMX环发生分子内结合,在10, 20和40 ℃·min-1升温速率下,断裂的HMX发生分子间成环,形成稳定的八元环结构。随着温度的升高,C—N键的断裂数率远高于N—N键的断裂速率。随着升温速率的增加,C—N键的起始分解温度增加,表明增加升温速率会引起HMX分解的滞后。检测到HMX的分解所释放出CO2, N2O, CO, NO, HCHO, HONO, NO2和HCN共八种气体,升温速率的变化未改变HMX的分解机理。  相似文献   

11.
KH2PO4中电子或空穴辅助下的氢缺陷反应   总被引:1,自引:0,他引:1  
刘长松 《物理》2004,33(1):9-11
研究了非线性光学晶体材料KH2 PO4(KDP)中不同带电状态的H缺陷的稳定性及其反应 .从而以清晰的物理图像描绘了KDP材料暴露在强紫外线或X射线下性能下降的原因 .研究发现 ,对于H间隙原子 ,当增加一个电子时 ,H间隙原子与主H原子发生作用 ,形成间隙H2 分子并产生一个H空位 ,而增加一个空穴时H间隙原子与临近的主O原子形成氢氧键 ,这两种带电态的H间隙原子均切断KDP材料中形成网络的氢键 ;对于H空位 ,增加一个空穴将导致形成“过氧化氢”桥结构 .这些结果在原子层次上清楚地解释了实验所建议的缺陷反应机制  相似文献   

12.
本文采用从头算分子动力学方法研究了一种著名的高能氧化剂二硝酰胺铵(ADN)在高温下(2000和3000 K)的热分解行为.在ADN的单分子分解中,发现了与温度有关的两种不同的引发分解机理,即分子内氢转移和N-NO_2键断裂.这两种机理在2000 K时存在竞争关系,但是在3000 K时后者是主要的分解机理.而在ADN的多分子分解中,观察到了四种受温度控制的引发分解反应.除了上述两种外,还有分子间氢转移和N-H键直接断裂.在2000 K时,N-NO_2键断裂发生的概率与其它3种相当,但是在3000 K时N-H键断裂是主要的分解通道.在引发分解发生后,发现升温可以加快反应速率,但是不会改变重要的反应特征.在氢的催化下,ADN通过简单、快速和直接的化学断裂分解为小分子,这个过程中并没有形成任何可能阻碍分解的较大中间体.在2000和3000 K时的主要分解产物相同,分别是NH_3、NO_2、NO、N_2O、N_2、H_2O和HNO_2.  相似文献   

13.
高压下固相硝基甲烷分解的分子动力学计算   总被引:3,自引:0,他引:3       下载免费PDF全文
张力  陈朗 《物理学报》2013,62(13):138201-138201
基于ReaxFF, 采用NVT系综和Berendsen方法对0–7 GPa时和2500 K时固相硝基甲烷的 分解过程进行分子动力学计算, 通过分析硝基甲烷发生分解反应生成的碎片数量随时间的变化, 对不同压强下硝基甲烷的分解机理进行研究. 计算结果表明在0–3 GPa时, 初始分解路径为C–N键断裂和硝基甲烷的异构化; 在4–7 GPa 时, 初始分解路径为分子间质子转移和C–N, N–O键的断裂; 在硝基甲烷的第二阶段反应中存在H2O, NO, NO2, HONO, 硝基甲烷分子自身的催化反应. 硝基甲烷在高温高压下发生热分解反应生成碳团簇, 且团簇中碳原子的数量和碳团簇的空间构型随着压强的变化而变化. 关键词: ReaxFF 分子动力学 热分解 压强效应 碳团簇  相似文献   

14.
含能材料的弹性性质微观上体现了分子间的结合力,且与含能材料的化学分解和爆炸相关.因此,弹性性质-晶体结构的关联为设计具有特定性质的新材料和理解含能材料点火起爆提供了理论基础.本文提出超分子结构单元作为最小化学单元来定量表征黑索金(RDX)不同晶面的弹性模量.基于超分子结构单元的弹性模量模型表明,与弹性模量相关的微观因素有:超分子结构单元的分子对数量、分子对的平衡距离、分子间力常数以及分子间非键能与晶面法线的夹角;而弹性模量的各向异性来源于分子间非键能与晶面法线的夹角不同.研究结果表明, RDX的超分子结构单元包含15个RDX分子,以该超分子结构单元计算得到RDX(100),(010),(001),(210)和(021)晶面的弹性模量分别为21.7, 17.1, 20.1, 19.1和15.3 GPa.除RDX(001)晶面外,以上晶面的理论计算值与超声共振谱、脉冲激热散射、布里渊散射和纳米压痕实验值基本吻合. RDX(001)晶面的计算值(20.1 GPa)远高于实验值(15.9—16.6 GPa),原因可能是计算过程中将RDX分子看作刚性体,忽略了RDX(001)晶面在外界载荷作用下...  相似文献   

15.
原位红外光谱法研究HMX炸药的热分解过程   总被引:10,自引:1,他引:9  
原位红外光谱法是一种新兴的动态研究方法.该方法具有原位实时监控和红外光谱精确分析物质化学结构的优点,能够实时跟踪材料在不同温度下的化学变化,测定材料的微观结构与温度的关系.文章采用原位红外光谱研究了炸药1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(HMX)在5℃·min-1升温条件下的热分解过程.研究结果表明:HMX在205℃发生C-N键和N-N键的断裂,随着温度的升高,C-N键的断裂速率远高于N-N键的断裂速率,表明C-N键的断裂是HMX的主要断键方式,在C-N键的断裂中伴随着N-N键的断裂.同时环的张力增大,表明断键的HMX产生分子内重新结合.检测到HMX的分解所释放出的CO2,N2O,CO,NO,HCHO,HONO,NO2和HCN等八种气体.根据HMX分解中凝聚相结构的变化和气相产物,推出HMX的分解机理:HMX产生C-N键的断裂,会释放出HCHO和N2O以及HONO和HCN;N-N键的断裂会释放出NO2.  相似文献   

16.
钯作为典型高压标定材料,研究其在极端条件下的结构变化以及热力学性质具有广泛需求并充满了挑战,特别是冲击加载下钯的固-固相变过程研究仍然匮乏.本文基于嵌入原子势,使用经典分子动力学方法从原子角度揭示了冲击载荷加载下钯的结构相变路径,在0—375 GPa的压力区间观察到一系列复杂的结构转变特征,从初始的面心立方(FCC)结构,至带密排六方(HCP)结构的层错体心立方(BCC)结构,直至完全熔化.在沿<100>晶向冲击下,在70.0 GPa发现了FCC-BCC相变过程,远低于之前研究中静高压的结果.此外,还发现了冲击方向依赖的相变点,在沿着<110>及<111>晶向冲击时FCC-BCC相变压力分别增加至135.8和165.4 GPa,同时相比完美晶体,引入缺陷会使FCC-BCC相变压强值有20—30 GPa的增幅,并通过势能分布的分析予以验证.本文发现冲击加载下钯的FCC-BCC相变压力大大降低的特殊现象,为钯在高压实验等极端条件下的应用提供了新的理论认识.  相似文献   

17.
牛海波  陈光德  伍叶龙  耶红刚 《物理学报》2014,63(16):167701-167701
采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算了纤锌矿型AlN中引入不同电荷态的N空位和Al空位时结构中最大局域化Wannier函数,并根据Wannier函数的空间分布及空间分布的几何中心位置,对空位引起的晶体电子结构变化及[0001],[ˉ1010],[ˉ12ˉ10]晶向上的自发极化进行了研究.结果表明,利用最大局域化Wannier函数分析电子结构具有直观的特点,清晰地表明N—Al键具有较强的离子性.研究发现,N空位结构中悬挂键上电荷向空位处转移,而Al空位结构中悬挂键上电荷则远离空位,沿悬挂键方向移动到N原子一侧.同时发现,空位的引入破坏了[ˉ1010],[ˉ12ˉ10]晶向上的中心对称结构,产生了极化,且极化强度随着空位电荷态的增加而增大.在[0001]晶向上,随着N空位电荷态的增加,空位周围电子结构发生了剧烈变化,使得自发极化发生了逆转,极化强度随着电荷态的增加而增大;而在Al空位中,随着电荷态的增加,自发极化沿原方向显著增加,但没有发生极化反转.  相似文献   

18.
采用传统降温法从不同程度氘化(x=0, 0.51, 0.85)的生长溶液中生长氘化KH2PO4(KDP) 晶体, 利用正电子湮没技术(正电子寿命谱和多普勒展宽谱)、结合X射线衍射谱(XRD) 结构分析, 对KDP晶体氘化生长的微观缺陷进行了研究, 讨论了氘化程度对晶体内部微观结构特性、缺陷类型和浓度的影响. XRD结果显示晶胞参数a, b值随氘含量的增加而增加, c值无明显变化; 正电子寿命谱结果发现随着氘化浓度的提高, KDP晶体内部中性填隙缺陷以及氧缺陷不断增加, 引起晶体晶格畸变; 氢空位、K空位、杂质替位缺陷不断发生缔合反应形成复合缺陷, 缺陷浓度不断减少; 团簇、微空洞等大尺寸缺陷也在不断发生聚合反应, 缺陷浓度表现为不断减少. 多普勒实验结果表明随着氘化程度的提升, 晶体内部各类缺陷表现为同步变化. 实验结果表明, KDP晶体在低浓度氘化生长(50%以内)下缺陷反应较弱, 而在高浓度氘化(50%以上)下的缺陷反应显著增强.  相似文献   

19.
本文采用基于密度泛函理论(DFT)的第一性原理方法,分别计算了120 GPa的压力范围内钇铝石榴石理想晶体和含氧空位点缺陷晶体的光学性质.计算数据表明:(1)在120 GPa的压力范围内其理想晶体和含2+价氧离子空位(形成能最低)的缺陷晶体在可见光区不存在光吸收(是透明的).(2)压力加载将导致其反射谱峰值强度降低,且空位缺陷的存在使其峰值强度进一步减弱.这些结果对进一步实验有重要的参考价值.  相似文献   

20.
基于密度泛函理论,研究了含S以及含N末端基团的分子结的拉伸与断裂过程.计算结果显示,对于尖端为锥形的金电极,当末端基团为—S时,拉断分子结的作用力大小为0.,59 nN,大于H原子未解离的—SH从金电极上断裂所需的0.25 nN作用力,但明显小于—S末端从平面金电极上断裂下来的约1.5 nN的作用力.当末端基团是—NH_2或—NO_2时,分子结断裂所需拉力分别为0.45和0.33 nN.体系轨道分布表明,分子与电极通过前线占据轨道耦合后形成的扩展体系分子轨道离域性越好,拉断分子结所需的作用力越大.自然键轨道(natural bond orbital,NBO)分析显示,若分子末端与电极间未形成成键轨道,末端原子上更多的NBO净电荷可以提高分子与电极间结合的稳定性.结合我们以前的研究,可以发现,—S末端和—NH_2末端对金电极界面的微观构型具有明显的识别功能,这为精确操控并理解分子与金电极间的相互作用及界面结构提供了有用信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号