首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous Fe(3)O(4)@C nanocapsules with a diameter of about 120 nm (about 50 nm cavity) were synthesized by combining a sacrificial template method with solvothermal treatment. The N(2) adsorption-desorption isotherms reveals their mesoporous structure and large BET surface area (159.8 m(2) g(-1)). The magnetic investigation indicates their superparamagnetic nature and high saturation magnetization (55.93 emu g(-1)). The nanocapsules also exhibit negative zeta potential (-27.59 mV) and possess carboxyl groups on the outer carbon layer, which keeps them highly dispersive in aqueous solution and provides a chelating function for metal ions. The heavy metals removal test demonstrates the excellent affinity of nanocapsules, the high efficiency for different metals (>90%), 79 mg g(-1) adsorption capacity for Pb(2+) and ultrafast removal process (Pb(2+), 99.57% within 1 minute). Protected by a porous carbon layer, the nanocapsules display excellent acidic resistance and adsorption properties even in an acidic solution (pH = 3). Moreover, the metal ions can be easily adsorbed and desorbed through manipulating the pH value for adsorbent regeneration and heavy metal recycling.  相似文献   

2.
The study of the adsorptions of cadmium and oxalate ions at the titania/electrolyte interface and the changes of the electrical double layer (edl) structure in this system are presented. The adsorption of cadmium or oxalate ions was calculated from an uptake of their concentration from the solution. The concentration of Cd(II) or oxalate ions in the solution was determined by radiotracer method. For labeling the solution 14C and 115Cd isotopes were used. Coadsorption of Cd(II) and oxalic ions was determined simultaneously. Besides, the main properties of the edl, i.e., surface charge density and zeta potential were determined by potentiometer titration and electrophoresis measurements, respectively. The adsorption of cadmium ions increases with pH increase and shifts with an increase of the initial concentration of Cd(II) ions towards higher pH values. The adsorption process causes an increase of negatively charged sites on anatase and a decrease of the zeta potential with an increase of initial concentration of these ions. The adsorption of oxalate anions at the titania/electrolyte interface proceeds through the exchange with hydroxyl groups. A decrease of pH produces an increase of adsorption of oxalate ions. The processes of anion adsorption lead to increase the number of the positively charged sites at the titania surface. However, specific adsorption of bidenate ligand as oxalate on one surface hydroxyl group may form inner sphere complexes on the metal oxide surface and may overcharge the compact part of the edl. The presence of oxalate ions in the system affects the adsorption of Cd(II) ions on TiO2, increasing the adsorption at low pH range and decreasing the adsorption at high pH range. Using adsorption as a function of pH data, some characteristic parameters of adsorption envelope were calculated.  相似文献   

3.
A high surface area was created during nucleation and crystal growth of gypsum by mixing calcium and sulfate ions, causing adsorption of heavy metals on the colloids of gypsum and capsulation in the subsequent precipitation process. In addition to the effect of surface area, zeta potential and surface pH of the gypsum colloids, ionic strength of solution, as well as solubility and particle size of the metal hydroxide influenced the extent of uptake of heavy metals from wastewater.  相似文献   

4.
Fundamental aspects of the removal of heavy metals from aqueous streams under conditions of competition among the various species have been studied between pH 3 and 9 on Spherosil XO75LS, ordered mesoporous MCM-41 and MCF silicas, as well as a MCF sample grafted with (3-aminopropyl)methoxydimethylsilane (AMPS-MCF). Cd(II), Co(II), Pb(II), or Sr(II) nitrate solutions were used to determine the percentage of metal uptake by each solid at 298K as a function of the pH of the equilibrium solution, at an initial metal concentration of 0.0001molL(-1) and the ionic strength being fixed with 0.01molL(-1) NaNO(3). Almost complete retention of the heavy metals on the four solid samples was observed, with the process beginning at pH values smaller than those marking the onset of "bulk" precipitation of a given metal in "free" solution. The heavy metal-uptake mechanism was regarded as hydrolysis-like phenomenon in metal-containing solid suspensions. Weak adsorption of metal species from slightly acidic and neutral solutions was a kind of nucleation step. Adding cadmium to an equimolar solution containing cobalt, lead, or strontium showed no significant effect on the retention of the main metal component. This indicated the great independence of the retention mechanisms.  相似文献   

5.
LIANG  Xuefeng  HOU  Wanguo  XU  Jie 《中国化学》2009,27(10):1981-1988
Mg‐Fe layered double hydroxide (LDH) with a Mg/Fe molar ratio of 3:1 was synthesized by using a coprecipitation method and the sorption removal of Pb(II) by the LDH sample from Pb(NO3)2 solution was investigated. It was found that Mg‐Fe LDH showed a good sorption ability for Pb(II) from Pb(NO3)2 solution, indicating that the use of LDH as a promising inorganic sorbent for the removal of heavy metal ions is possible. The sorption kinetics and the sorption isotherm of Pb(II) on the LDH sample obeyed the pseudo‐second order kinetic model and Aranovich‐Donohue equation, respectively. The sorption mechanism of Pb(II) on the LDH may be attributed to the surface‐induced precipitation and the chemical binding adsorption, and the removal ability arising from the surface‐induced precipitation is much higher than that from the chemical binding adsorption.  相似文献   

6.
The divalent metal ion sorption (Cu(2+), Cd(2+), Ni(2+), and Pb(2+)) on chromium phosphate (CrPO(4)) was studied as a function of pH, temperature, and concentration of metal ions. The sorption of metal ions is observed to increase with the increase in pH, temperature, and concentration of metal ions in solution. The mechanism of sorption is found to be the exchange of the hydrolyzed metal cations with the protons from solid at high temperature. The sorption at low temperature is found to be accompanied by the precipitation of the corresponding metal phosphates such as Pb(3)(PO(4))(2).  相似文献   

7.
Contamination of the environment with heavy metal ions has been an important concern throughout the world for decades. Driven by the need to detect trace amounts of mercury in environmental samples, this article demonstrates for the first time that nonlinear optical (NLO) properties of MPA-HCys-PDCA-modified gold nanoparticles can be used for rapid, easy and reliable screening of Hg(II) ions in aqueous solution, with high sensitivity (5 ppb) and selectivity over competing analytes. The hyper Rayleigh scattering (HRS) intensity increases 10 times after the addition of 20 ppm Hg(2+) ions to modified gold nanoparticle solution. The mechanism for HRS intensity change has been discussed in detail using particle size-dependent NLO properties as well as a two-state model. Our results show that the HRS assay for monitoring Hg(II) ions using MPA-HCys-PDCA-modified gold nanoparticles has excellent selectivity over alkali, alkaline earth (Li(+), Na(+), K(+), Mg(2+), Ca(2+)), and transition heavy metal ions (Pb(2+), Pb(+), Mn(2+), Fe(2+), Cu(2+), Ni(2+), Zn(2+), Cd(2+)).  相似文献   

8.
Metal adsorption data over a range of surface coverages typically are characterized by curvilinear metal adsorption isotherms. These isotherms generally have a slope of 1 at low surface coverage and a shallower slope at higher surface coverages. The curvature of metal adsorption isotherms with increasing surface coverage is frequently interpreted in terms of sequential adsorption onto different types of surface sites, multinuclear surface complexation, or nonideality of metal adsorption. We demonstrate that the curvature of metal adsorption isotherms can also be attributed to changes in surface charge and potential that depend on the predominant type of metal surface complex. A single-site extended triple-layer model is used to reinterpret previously studied metal adsorption isotherms and pH edges for a wide variety of metals (Cd2+, Co2+, Cu2+, Pb2+, and Zn2+) and solids (goethite, hydrous ferric oxide, corundum, and magnetite) in different electrolyte solutions (NaNO3 and NaClO4). Only metal adsorption on ferrihydrite at very low surface coverages is not consistent with the single-site triple-layer model. This discrepancy might be explained if ferrihydrite is in fact not a single phase but a mixture of two or more phases. Metal surface coverages ranging from 10(-4) to 10.2 mmol/m2 on the other minerals can be accounted for with a single-site extended triple-layer model if appropriate metal adsorption reactions are chosen. In addition, several examples suggest that, within the context of the model, surface complexation schemes can be established that describe metal adsorption over both a wide range of surface coverage and a wide range of ionic strength.  相似文献   

9.
The separation behaviour of Pb(2+), Cu(2+), Cd(2+), Co(2+), Zn(2+) and Ni(2+) on bifunctional quaternary ammonium-sulfonate mixed ion-exchangers (Dionex, IonPac CS5 and CG5) was studied using different eluents including solutions of oxalic acid, potassium oxalate, sodium oxalate and ammonium oxalate. Separated metal ions were followed by using 4-(2-pyridylazo) resorcinol (PAR) as post-colouring complex. The retention factors of different ions proved to be dependent on the pH, concentration, nature of each complexing agent, and to less extent on eluent flow rate. The retention behaviour and separation mechanism of complexed metal analytes are discussed in the light of the stability of metal complexes and the ligand complexing ability of used eluent. Comparison between various mobile phases is evaluated, and both sodium and potassium oxalate can be used successfully for simultaneous separation of studied metals with good resolution within short elution periods. The method can be used in different applications including analysis of bottled water from different resources.  相似文献   

10.
Boehmite (Al(OH)O) was employed for the removal of aqueous Mg(2+), Cu(2+), Cd(2+), Pb(2+), and Co(2+) at 298 K. Although boehmite was able to remove these divalent cations, the greater removal rate with boehmite of Pb(2+) (28.7%) than with Mg(2+), Cu(2+), Cd(2+), and Co(2+) (5.6, 25.3, 10.9, and 13.3%, respectively) was observed under acidic conditions. Under stronger alkaline conditions, in which the lead species was completely dissolved, a greater removal rate of Pb(2+) (more than 80%) was observed under the corresponding conditions employed for the acidic conditions. The removed lead species could not be dissolved from boehmite in an acidic solution while an evident dissolution of lead species was detected using an aqueous NaOH solution. The results shown in the present study reveal that boehmite can be employed as a reagent for the removal and regeneration of aqueous metal cations.  相似文献   

11.
Heterocoagulation experiments of kaolinite with solvent-diluted-bitumen were carried out to investigate the effect of hydrolyzable metal cations and citric acid on the liberation of bitumen from kaolinite. The adsorption of Ca(2+) and Mg(2+) on kaolinite, and zeta potentials of kaolinite and bitumen droplets in solutions containing 10(-3)mol/L of Ca(2+), Mg(2+) and Fe(3+) with or without citric acid were also measured. It was found that the heterocoagulation of bitumen with kaolinite was enhanced in the presence of the metal cations from pH 7 to pH 10.5, accompanied by a decrease in the magnitude of the zeta potentials and an increase in the adsorption of the metal cations on kaolinite and possibly on bitumen droplets. The addition of 5 x 10(-4)mol/L citric acid reduced the degree of coagulation from 90% to less than 40% in the presence of 10(-3)mol/L Ca(2+) and Mg(2+) cations at pH approximately 10, and at pH approximately 8 for Fe(3+). It was found that hydrolyzable metal cations enhanced bitumen-kaolinite interactions through electrical double layer compression and specific adsorption of the metal hydrolysis species on the surface of kaolinite. The effect of metal cations was removed by citric acid through formation of metal-citrate complexes and/or the adsorption of citrate anions, which restored the zeta potentials of both kaolinite and bitumen. Therefore, electrostatic attraction or repulsion was responsible for the coagulation or dispersion of kaolinite particles from bitumen droplets in the tested system.  相似文献   

12.
以三维刚性结构的三蝶烯为单体, 通过简单的Friedel-Crafts烷基化反应制备得到高比表面积的三蝶烯基多孔有机聚合物(TPOP), 在TPOP中接枝乙二胺和氯乙酸钠, 构建了广谱重金属离子吸附剂(TPOP-CH2EDTA). 获得的TPOP-CH2EDTA具有微孔/介孔结构, 其微孔尺寸为1.6 nm, BET比表面积为634 m2/g, 利于重金属离子传递和配位作用的强化. TPOP-CH2EDTA对重金属离子具有吸附广谱性, 其对Ag(Ⅰ), Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Sn(Ⅳ), Pb(Ⅱ), Cd(Ⅱ), Fe(Ⅲ)和Cr(Ⅲ)等10种重金属离子的去除率均高于98%. 以Pb(Ⅱ)为典型的重金属污染物, 通过Langmuir模型计算得到Pb(Ⅱ)的最大吸附容量高达184.5 mg/g; 具有拟二级吸附动力学特征, 吸附速率快, 动力学常数k2为0.0173 g·mg?1·min?1; 经过5次循环使用后, Pb(Ⅱ)的去除效率仍高达95.8%. TPOP-CH2EDTA对混合溶液中Pb(Ⅱ)和Cu(Ⅱ)的去除率均高于99%, 且对含有大量无机盐[如Ca(Ⅱ), Mg(Ⅱ), K(Ⅰ)和Na(Ⅰ)离子]和有机化合物的复杂真实水体系, Pb(Ⅱ)和Cu(Ⅱ)的去除效率仍高于90%. 因此, 通过调控多孔有机聚合物微观结构(如比表面积、 孔径和吸附位点密度)而构筑的广谱性重金属吸附材料, 为协同去除复杂水系统中混合重金属离子提供了方案.  相似文献   

13.
The adsorption of metal ions at the stearic acid/electrolyte and nnonadccane-stearic acid mixture/electrolyte interface was investigated by means of the potentiometric titration, zeta potential and adsorption measurements. It was found that the studied colloidal suspensions exhibited an adsorption affinity towards multivalent metal ions. The adsorption of Ca2+, Cd2+ and Al3+ ions caused a strong decrease of surface charge density and zeta potential values in this systems. The adsorption reactions occur by way of cation exchange with protons from two surface carboxyl groups. Al high metal concentrations, in adsorption reactions there are involved also carboxyl groups from the subsurface layer. On the basis of the adsorption data, the cation surface complexation constants were calculated by Shindler's method.  相似文献   

14.
Adsorption of tetracycline, one of the most widely used antibiotics, onto goethite was studied as a function of pH, metal cations, and humic acid (HA) over a pH range 3-10. Five background electrolyte cations (Li(+), Na(+), K(+), Ca(2+), and Mg(2+)) with a concentration of 0.01 M showed little effect on the tetracycline adsorption at the studied pH range. While the divalent heavy metal cation, Cu(2+), could significantly enhance the adsorption and higher concentration of Cu(2+), stronger adsorption was found. The results indicated that different adsorption mechanisms might be involved for the two types of cations. Background electrolyte cations hardly interfere with the interaction between tetracycline and goethite surfaces because they only form weak outer-sphere surface complexes. On the contrary, Cu(2+) could enhance the adsorption via acting as a bridge ion to form goethite-Cu(2+)-tetracycline surface complex because Cu(2+) could form strong and specific inner-sphere surface complexes. HA showed different effect on the tetracycline sorption under different pH condition. The presence of HA increased tetracycline sorption dramatically under acidic condition. Results indicated that heavy metal cations and soil organic matters have great effects on the tetracycline mobility in the soil environment and eventually affect its exposure concentration and toxicity to organisms.  相似文献   

15.
Competitive adsorption is the usual situation in real applications, and it is of critical importance in determining the overall performance of an adsorbent. In this study, the competitive adsorption characteristics of all the combinations of binary mixtures of aqueous metal ion species Ca2+(aq), Cd2+(aq), Pb2+(aq), and Hg2+(aq) on a functionalized activated carbon were investigated. The porous structure of the functionalized active carbon was characterized using N2 (77 K) and CO2 (273 K) adsorption. The surface group characteristics were examined by temperature-programmed desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, acid/base titrations, and measurement of the point of zero charge (pHpzc). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for both single-ion and binary mixtures of these species. Hydrolysis of metal species in solution may affect the adsorption, and this is the case for adsorption of Hg2+(aq) and Pb2+(aq). Competitive adsorption decreases the amounts of individual metal ions adsorbed, but the maximum amounts adsorbed still follow the order Hg2+(aq) > Pb2+(aq) > Cd2+(aq) > Ca2+(aq) obtained for single metal ion adsorption. The adsorption isotherms for single metal ion species were used to develop a model for competitive adsorption in binary mixtures, involving exchange of ions in solution with surface proton sites and adsorbed metal ions, with the species having different accessibilities to the porous structure. The model was validated against the experimental data.  相似文献   

16.
Carbon dioxide (CO(2)) adsorption capacities of several hydroxy metal carbonates have been studied using the state-of-the-art Rubotherm sorption apparatus to obtain adsorption and desorption isotherms of these compounds up to 175 bar. The carbonate compounds were prepared by simply reacting a carbonate (CO(3)(2-)) solution with solutions of Zn(2+), Zn(2+)/Mg(2+), Mg(2+), Cu(2+)/Mg(2+), Cu(2+), Pb(2+), and Ni(2+) metal ions, resulting in hydroxyzincite, hydromagnesite, mcguinnessite, malachite, nullaginite, and hydrocerussite, respectively. Mineral compositions are calculated by using a combination of powder XRD, TGA, FTIR, and ICP-OES analysis. Adsorption capacities of hydroxy nickel carbonate compound observed from Rubotherm magnetic suspension sorption apparatus has shown highest performance among the other components that were investigated in this work (1.72 mmol CO(2)/g adsorbent at 175 bar and 316 K).  相似文献   

17.
矿物表面因存在有各种悬空键 ,而形成了表面活性官能团 ,称作“表面位”。对石英来说 ,表面氧离子可以与水中H+和OH- 离子反应 ,使表面产生荷电性。研究表明[1 ,2 ] ,石英对二价金属离子的吸附反应遵循Freudlich方程 ,本文在分析石英表面位及其质子化反应、表面位与重金属离子反应的基础上 ,进一步探讨石英与水溶液作用的界面反应特征及其影响因素。1 实验材料与方法石英粉末样品用王水煮洗 ,后用纯净水浸洗至无AgCl,过滤、1 1 0℃烘干、450℃煅烧 1 2h。经NOVA 1 0 0 0VER3.7自动表面分析仪 (N2 BET法 )测定…  相似文献   

18.
Sekido E  Fujiwara I  Masuda Y 《Talanta》1972,19(4):479-487
The effect of acidity on the precipitation of various bivalent metal 8-selenoquinoline and 8-mercaptoquinoline complexes has been systematically studied and compared. The metal ions were Zn(2+), Cd(2+), Pb(2+), Mn2+, Ni(2+), Cu(2+) and Co(2+). Most of the metal ions, except copper(II) and cobalt(II), precipitate as a. 1:2 complex, metal :ligand. However, in hydrochloric acid solution cadmium precipitates as CdR(2).2HCl and lead as PbR(2).2HCl or PbR.Cl. Copper(II) is reduced to copper(I) and precipitates as CuR.RH at pH above 2.0 and as CuR in strongly acidic solution. Cobalt(II) does not give a precipitate of composition but appears to precipitate as a mixture of CoR(2).RH and fixed CoR(2) or as other complexes. The reasons for the formation of the various types of precipitate are considered.  相似文献   

19.
Determination of lead in phosphate ore and phosphogypsum   总被引:2,自引:0,他引:2  
Laser induced breakdown spectroscopy (LIBS) is applied to analyze aqueous solutions of Li(+), Na(+), Ca(2+), Ba(2+), Pb(2+), Cd(2+), Hg(2+) and Er(3+) and suspensions of ErBa(2)Cu(3)O(x) particles (d=0.2 microm). An excimer (308 nm) pumped dye laser with laser pulse at 500 nm and pulse energy at 22+/-2 mJ is used to produce plasma in aqueous solution. Plasma emission lines of the elements are detected by a photodiode array detector. Detection limits of the metal ions are 500 mg/l for Cd(2+), 12.5 mg/l for Pb(2+), 6.8 mg/l for Ba(2+), 0.13 mg/l for Ca(2+), 13 microg/l for Li(+) and 7.5 microg/l for Na(+). No mercury and erbium emission can be detected, even at Hg(2+) and Er(3+) concentrations of up to the g/l range. On the other side, for Er in suspensions of ErBa(2)Cu(3)O(x) particles a more than 10(3) times higher sensitivity is found than for dissolved Er(3+). This result gives a possibility to analyze colloid-borne metal ions with an increased sensitivity.  相似文献   

20.
The effects of ion species, cation valence, ionic strength, and hydrated ionic radius on the zeta potential of quartz have been systematically studied through the measurement of zeta potential, sedimentation rate, and aggregation observation. The results show that the interaction between hydrolysis components and quartz particles results in three critical points – CR1, CR2, and CR3. The results of sedimentation and aggregation observation are in good agreement with the changes of the zeta potential in 0.1?M MgCl2, the maximum sedimentation rate being 99.26% at pH 10.85. When the pH is around 6.25 or 10.00, the sedimentation rate is relatively lower and the size of aggregation smaller. The adsorption of hydrolyzable multivalent metal ions on the quartz surface is a combination of three adsorption forms, namely electrostatic adsorption, hydroxyl complex adsorption, and hydroxide precipitation adsorption. Then the hydrolysis properties of metal ions and the surrounding environment determine the action of the hydrolysis components and the main form of adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号