首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel near-infrared light photothemal-activated H2S-donating nanocomposite hydrogel was developed,through combination of a thermo-labile H2S donor and photothermal nanoparticles in agarose hydrogel.The polyethylenimine dithiocarbamate polymer,a thermo-labile compound,was synthesized as a novel H2S donor.The combination of a thermo-labile hydrogen sulfide donor and photothermal nanoparticles enabled the generation of H2S in agarose hydrogel upon irradiation with near-infrared light.The ability to modulate the photoirradiation for controlled generation and spatiotemporally release of H2S are its specific advantages.This photothermal spatiotemporally controlled H2S-releasing strategy was successfully applied to anti-inflammation treatment in a rat model,demonstrating its utility as a novel H2S-based therapeutic approach.  相似文献   

2.
Phosphorescence in fluid solutions at ambient temperature is usually quenched by molecular oxygen via energy transfer, and singlet oxygen is concomitantly sensitized. The long‐lived phosphorescence of a series of AuI arylethynyl complexes with tunable emission energies in aerated dimethyl sulfoxide (DMSO) solutions can be completely and repeatedly switched on by controlled photoirradiation. A trace amount of DMSO oxidation by the sensitized singlet oxygen is proposed to lead to a depletion of molecular oxygen in the local microenvironment of the AuI phosphor in the photoactivation processes. Harnessing the photoactivated phosphorescence and using UV light as a non‐contact pen, a writing–erasing–rewriting prototype has been demonstrated with a DMSO gel containing AuI arylethynyl complexes.  相似文献   

3.
A new unsymmetrical photochromic diarylethene, namely1-[2-methyl-5-(p-N,N-dimethylaminophenyl)-3-thienyl]-2-[2-methyl-5-(3-methoxylphenyl)-3-thienyl] perfluorocyclopentene (1a), was synthesized. The compound showed good photochromism, high sensitivity and remarkable fatigue-resistance both in solution and in poly(methyl methacrylate) (PMMA) matrix with UV/Vis light irradiation. The absorption maximum of its closed-ring isomer was observed at 624 nm in PMMA amorphous film. It is a nice match for the wavelength of the recording laser (633 nm). Using this target compound as recording medium, four types of polarization holographic optical recordings were performed successfully using a He-Ne laser. The results showed that only the orthogonal circular polarization recording could obtain a hologram with high diffraction efficiency and high signal-to noise-ratio. With multiplexing recording technology, three types of polarization multiplexing holographic optical recordings, including angular multiplexing, polarization multiplexing, and angular plus polarization multiplexing holographic recording, were also carried out perfectly based on its photoinduced anisotropic phenomenon accompanying the photochromic reaction by photoirradiation. The results demonstrate that the multiplexing recording technology is an effective method to improve recording capacity when using diarylethene 1 as recording medium.  相似文献   

4.
Modulation of biological networks assembled by diverse interactions among biologically active molecules has provided a platform for innovative biotechnologies. Here, we report RNA aptamers that bind to a photoresponsive peptide (KRAzR; Lys‐Arg‐azobenzene‐Arg) containing azobenzene chromophore, which can change its structure by photoirradiation. Aptamers were identified after 10 cycles of an in vitro selection procedure starting with a DNA library containing a 70 nt random region. Surface plasmon resonance (SPR) analysis demonstrated that interactions between aptamers and KRAzR were fully controlled by appropriate photoirradiation to the SPR sensor chip. Upon irradiation of 360 nm on the KRAzR‐immobilized surface, the binding of each aptamer to the surface was significantly decreased. Subsequent photoirradiation of the same surface with 430 nm restored the aptamer binding to the surface. We also observed that direct photoirradiation of the aptamer–peptide complex on a gold surface actively promoted dissociation of the complex. Furthermore, a doped reselection method was applied to acquire structural and sequence information of aptamer 66. From a data analysis of the conserved region and the mutation frequency, we were able to select a plausible secondary structure among three candidates predicted by computational folding simulation.  相似文献   

5.
We report a branched polyethyleneimine (BPEI)-quantum dot (QD) based rewritable fluorescent system with a multicolor recording mode, in which BPEI is both QD-multicolor patterning "writer" and data erasing "remover". This method could write distinct colors from size-tailored QDs to represent large numbers of logic states for high data storage capacity.  相似文献   

6.
We report the development of a new templating molecule designed by the modification of a helix-forming β-1,3-glucan polysaccharide to the cationic semiartificial one and its application to the fabrication of one-dimensional (1D) gold nanostructures by simple photoirradiation. Transmission electron microscopy observation showed that Au(III) ions are primarily reduced to gold nanoparticles self-assembling into the 1D array with the aid of the cationic β-1,3-glucan polysaccharide, which gradually fuse into the 1D gold nanostructure with the tapelike structure. The gold nanotape structure could not be created by neutral β-1,3-glucan polysaccharides or random coil synthetic cationic polymers. These findings consistently support the view that Au(III) ions are reduced by unmodified OH groups to gold nanoparticles under the photoirradiation, which are wrapped in the helical structure of the cationic β-1,3-glucan polysaccharide and eventually fuse into gold nanotapes. One may regard, therefore, that this cationic β-1,3-glucan polysaccharide can act as an "all-in-one" template playing three roles of reduction, 1D arrangement, and fusion of gold nanoparticles. In addition, we found an interesting phenomenon that the obtained gold nanotapes coated with cationic β-1,3-glucan polysaccharides show unique surface-enhanced Raman scattering for anionic porphyrines organized on the surface of gold nanotapes through the electrostatic interaction.  相似文献   

7.
The Mott insulator-metal transition induced by an external stimulus such as electric field, pressure, chemical doping, or photoirradiation has received considerable attention because of the potential use in new optoelectronic functional devices. Here we report an abrupt Mott insulator-metal transition observed as a current jump in a molecular-based Mott insulator, namely, deuterated κ-(BEDT-TTF)(2)Cu[N(CN)(2)]Br, where BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene, upon application of a pulsed voltage of certain magnitude (threshold voltage). Furthermore, the threshold voltage needed for the transition is shown to be reduced by photoirradiation. Thus, the Mott insulator-metal transition can be controlled by a combination of an external electric field and photoirradiation.  相似文献   

8.
光盘存储材料及其新进展   总被引:1,自引:0,他引:1  
本文简要叙述光盘写入、读出和擦除的机理并对近年来有机记录介质的研究重点及其相应的技术动向做了分析.当前的研究与开发的重点是具有高记录密度,数据传输速率快、稳定性好、载噪比大和误码率低的可擦型光盘存储材料.  相似文献   

9.
We developed a novel method to spatiotemporally control the activity of signaling molecules. A newly synthesized photocaged rapamycin derivative induced rapid dimerization of FKBP (FK-506 binding protein) and FRB (FKBP-rapamycin binding protein) upon UV irradiation. With this system and the spatially confined UV irradiation, we achieved subcellularly localized activation of Rac, a member of small GTPases. Our technique offers a powerful approach to studies of dynamic intracellular signaling events.  相似文献   

10.
The present paper involves the synthesis of polyaniline (PANI) composite with photoadduct of potassium hexacyanoferrate (II) involving hexamine as a ligand and cobalt chloride as a complexing agent via in situ oxidative polymerization by ammonium persulphate. The photoadduct has been synthesized by photoirradiation followed by substitution with the hexamine ligand. The final product has been isolated by using CoCl2 as complexing agent. Viscosity average molar mass has been determined by viscosity method using Ostwald’s viscometer. The photoirradiation, substitution, and successful synthesis have been proved by recording pH, UV–visible spectra before and after irradiation, and FTIR of the photoadduct. The composite based on the synthesized photoadduct has been subjected to FTIR, X-ray diffraction, and SEM characterization techniques. Thermal analysis has been done by using TG and DSC technique. FTIR absorption peaks confirm the insertion of photoadduct in the backbone of PANI. SEM of the composite also supports its successful synthesis. The XRD of photoadduct shows crystalline structure, which has remained dominant in the composite, hence proving the successful synthesis of PANI composite with photoadduct. Thermal analysis shows high thermal stability of photoadduct which in turn has improved the thermal stability of PANI composite, therefore, shows the potential of composite for high-temperature application purposes.  相似文献   

11.
The E/Z isomerization reaction is found extensively in most organic molecules containing double bond unit. This limits their practical application as luminescent materials partly, especially under photoirradiation. Therefore, it is important to obtain E/Z isomers with stable configuration in the excited state after photoirradiation. It is well known that cyanostilbene and its analogues play an important role in the development of organic opto/electronic materials. The substituted cyano group on C=C double bonds has strong electron-withdrawing ability and large steric hindrance, which benefits the formation of donor-acceptor (D-A) structures and formation of intramolecular charge transfer. In our previous work, we reported a triphenylamine-cyanostilbene molecule (TPNCF) formed by modifying the cyanostilbene structure with triphenylamine, which maintained a stable E/Z configuration as a film and in high polar solvents. According to solvatochromism mechanisms and the results of theoretical calculations, we proposed that the charge transfer (CT) excited state between the triphenylamine donor and cyanostilbene acceptor groups induced the stable configuration of the E- and Z- isomers under photoirradiation. Under irradiation, the E/Z isomerization process occurring at a higher energy locally excited (LE) state was suppressed by a rapid internal conversion process from the LE to CT state. This work inspired us to provide a universal and effective molecular design strategy by modifying D-A substituents on double bonds that can successfully stabilize E/Z isomers. To further confirm that the CT excited state induced stable E- and Z- isomers in the cyanostilbene structure under photoirradiation, we designed and synthesized a donor-acceptor phenoxazine-cyanostilbene molecule (PZNCF) and successfully characterized its two E/Z isomers. In comparison with the reported TPNCF molecule, the in-situ NMR and UV spectra of E- and Z- isomers of PZNCF demonstrated that the E/Z isomerization rate became slower under photoirradiation, which indicated that the stronger electron-donating group of phenoxazine substituted in the cyanostilbene structure induced a more stable E/Z isomer configuration in its excited state. DFT calculations and photophysical results indicated that a stronger CT state was generated in both E- and Z- isomers of PZNCF. This further confirmed our hypothesized mechanism where the stable E/Z configuration can be obtained under photoirradiation by forming a suitable donor-acceptor structure to suppress the E/Z isomerization reaction in the LE state by a rapid internal crossing process from the LE to CT state. This molecular design strategy is of great significance to organic photochemistry and photoelectronics for molecules with double bond units.  相似文献   

12.
The photochromic sol-gel hybrid materials containing cyanoazobenzene chromophores were described. These materials were obtained by copolycondensation of the functionalized triethoxysilane and tetraethoxysilane precursor. They were deposited on glass substrates via spin coating and casting techniques to provide thin transparent films. The UV-vis spectroscopy showed reversibility of the trans-cis photoisomerization of the chromophoric fragments. The reversible change of refractive index of the films on illumination with white light was determined by ellipsometry. The difference of real part of the refractive index of the sample was in the range 0.0053–0.0075. Formation of diffraction grating was achieved by two beam coupling arrangement using a 532 nm laser. The diffraction efficiency for the first order diffraction was in the range of 2–3.5%. The kinetics of photochromic grating recording and erasing was described by biexponential function approach.  相似文献   

13.
To cope with the growing needs in research towards the understanding of cellular function and network dynamics, advanced micro-electrode arrays (MEAs) based on integrated complementary metal oxide semiconductor (CMOS) circuits have been increasingly reported. Although such arrays contain a large number of sensors for recording and/or stimulation, the size of the electrodes on these chips are often larger than a typical mammalian cell. Therefore, true single-cell recording and stimulation remains challenging. Single-cell resolution can be obtained by decreasing the size of the electrodes, which inherently increases the characteristic impedance and noise. Here, we present an array of 16,384 active sensors monolithically integrated on chip, realized in 0.18 μm CMOS technology for recording and stimulation of individual cells. Successful recording of electrical activity of cardiac cells with the chip, validated with intracellular whole-cell patch clamp recordings are presented, illustrating single-cell readout capability. Further, by applying a single-electrode stimulation protocol, we could pace individual cardiac cells, demonstrating single-cell addressability. This novel electrode array could help pave the way towards solving complex interactions of mammalian cellular networks.  相似文献   

14.
Protein-protein pore interaction is a fundamental and ubiquitous process in biology and medical biotechnology. Here, we employed high-resolution time-resolved single-channel electrical recording along with protein engineering to examine a protein-protein pore interaction at single-molecule resolution. The pore was formed by Staphylococcus aureus alpha-hemolysin (alphaHL) protein and contained electrostatic traps formed by rings of seven aspartic acid residues placed at two different positions within the pore lumen. The protein analytes were positively charged presequences (pb2) of varying length fused to the small ribonuclease barnase (Ba). The presence of the electrostatic traps greatly enhanced the interaction of the pb2-Ba protein with the alphaHL protein pore. This study demonstrates the high sensitivity of the nanopore technique to an array of factors that govern the protein-protein pore interaction, including the length of the pb2 presequence, the position of the electrostatic traps within the pore lumen, the ionic strength of the aqueous phase, and the transmembrane potential. Alterations in the functional properties of the pb2-Ba protein and the alphaHL protein pore and systematic changes of the experimental parameters revealed the balance between forces driving the pb2-Ba protein into the pore and forces driving it out.  相似文献   

15.
We demonstrate a novel technique for molecular imprinting and immobilization on a surface of a polymer containing azo dyes (azopolymer). The azopolymer was found to be capable of immobilizing micrometer- and nanometer-scale macromolecules (e.g., lambda-DNA, immunoglobulin G (IgG), bacterial protease, and 1-mum polystyrene particles) through photoirradiation with blue-wavelength light. Fluorescence and atomic force microscopy studies revealed that the azopolymer surface deformed along with the shape of the macromolecules, holding them in place after photoirradiation. The desorption of the immobilized macromolecules from the azopolymer surface in an aqueous medium was observed to be very slow, on the time scale of 10 min to weeks, depending on the photoirradiation time. Immunological and enzymatic studies showed that IgG and bacterial protease immobilized on the azopolymer surface retained their original functionality. These results suggest that the azopolymer physically, not chemically, binds the macromolecules because of the increase in contact area between the macromolecules and the azopolymer surface after photoirradiation.  相似文献   

16.
《Liquid crystals》2001,28(2):271-277
We have explored the change in alignment of a nematic liquid crystal, 4'-pentyl-4-cyanobiphenyl (5CB) with three types of photosensitive polyimide as the alignment layer by photoirradiation at 366 nm. The photosensitive polyimide alignment layer induced a reversible change in alignment of 5CB. It was observed that the 5CB molecules became aligned from homogeneous alignment to homeotropic on photoirradiation with a d.c. electric field as a bias, and reversed to the homogeneous state when photoirradiation was ceased. This result indicates that optical switching could be repeated by on and off switching of the excitation light at 366 nm. The optical switching of the nematic liquid crystal might be mainly due to a photophysical change in the polyimide surface which is affected by the chemical structures of the polyimides at the temperature at which 5CB exhibits a nematic phase. The optical switching of nematic liquid crystals with photosensitive polyimides as the alignment layer is a novel driving method for nematic liquid crystals.  相似文献   

17.
We have explored the change in alignment of a nematic liquid crystal, 4'-pentyl-4-cyanobiphenyl (5CB) with three types of photosensitive polyimide as the alignment layer by photoirradiation at 366 nm. The photosensitive polyimide alignment layer induced a reversible change in alignment of 5CB. It was observed that the 5CB molecules became aligned from homogeneous alignment to homeotropic on photoirradiation with a d.c. electric field as a bias, and reversed to the homogeneous state when photoirradiation was ceased. This result indicates that optical switching could be repeated by on and off switching of the excitation light at 366 nm. The optical switching of the nematic liquid crystal might be mainly due to a photophysical change in the polyimide surface which is affected by the chemical structures of the polyimides at the temperature at which 5CB exhibits a nematic phase. The optical switching of nematic liquid crystals with photosensitive polyimides as the alignment layer is a novel driving method for nematic liquid crystals.  相似文献   

18.
A voltammetric sensor for albuterol was investigated where we combined the techniques of microfabrication and molecular imprinting to construct on-chip devices using photoirradiation of cross-linkable polymers. Molecularly imprinted polymer was coated as a thin film onto the gold working electrode on chip and the analyte was directly quantified by differential pulse voltammetric measurements.  相似文献   

19.
Abstract— The photodynamic effect of Victoria blue BO (VB-BO) and photoirradiation on peripheral blood mononuclear cells was studied. The cells were preincubated with VB-BO followed by photoirradiation and overnight culture. The highest percentage of dead cells (propidium iodide assay in flow cytometry) was seen in the monocyte population. The lymphocytes showed a lower sensitivity to VB-BO photodynamic action than the monocytes (12% vs 80% of Pi-positive cells). The effect of VB-BO and phototreatment on lymphocyte function was studied using a mitogen-induced proliferation assay. A decrease of mitogen response was observed. The VB-BO and photoirradiation were also used on leukemic cells. The leukemic cells from acute myeloid leukemia and B precursors leukemia were sensitive to VB-BO photodynamic action. The high VB-BO sensitivity of monocytes and leukemic cells (myeloid and lymphoid B derived) suggests possible application of VB-BO for selective depletion of monocytes or sensitive leukemic cells.  相似文献   

20.
We fabricated a vertically and unidirectionally oriented metal coordinated α-helical peptide monolayer, Leu(2)Ala(Pyri)(Co(II))Leu(6)Ala(4-Pyri)(Co(II))Leu(6), by stepwise polymerization on a mixed self-assembled monolayer consisting of amino-alkanethiol, dialkyl disulfide, and ferrocenyl alkanethiol acted as a photoresponsive electron donor. Redox-active protein, nitrate reductase (NR), was fixed on the surface of the peptide monolayer. By contrast, we fixed NR on the mixed self-assembled monolayer directly. Upon photoirradiation, electron flow occurred from the excited ferrocenyl group on the substrate to the electron acceptor, NR, on the surface of the molecular layers. The activated NR on the molecular layers reduced the nitrate to nitrite. The amount of the bioelectrocatalytic product, nitrite, generated by the immobilized NR on the peptide monolayer was larger than that produced by the immobilized NR on the mixed self-assembled monolayer directly. That is to say, the NR on the peptide monolayer has been more activated rather than that on the peptide absent monolayer by photoirradiation. The effective activation of the NR on the peptide monolayer can be explained in terms of enhancement of the vectorial electron flow along the macro-dipole moment of the α-helical peptide that arranged unidirectionally. It suggested that the ordered metal coordinated α-helical peptide monolayer acted as an efficient electron mediator to achieve a communication between the electron donor and the redox-active moiety. Such a hybrid molecular system looks promising for novel nanodevices, such as nano-photoreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号