首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A single line flow-injection system with immobilized-enzyme reactors is proposed for the sequential quantification of γ-aminobutyrate (GABA) and l-glutamate. A co-immobilized l-glutamate oxidase and catalase reactor and an immobilized GABase reactor were introduced into the flow line in series. Sample and reagent were injected into the flow line using an open sandwich method. GABA was selectively detected by GABase when α-ketoglutarate at a high concentration and NADP+ were injected as the reagents with a sample. When GABA at a high concentration and NADP+ were injected as the reagents with a sample, l-glutamate only was determined by the series of enzymatic reactions. NADPH produced by the immobilized-enzyme reactors was monitored fluorometrically at 455 nm (excitation at 340 nm). Linear relationships between the responses and concentrations of GABA or l-glutamate were observed in the ranges of 5.0 × 10−6-5.0 × 10−4 M and 1.0 × 10−5-5.0 × 10−4 M, respectively. The relative standard deviations for ten successive injections were less than 2% at the 0.5 mM level. This analytical method was applied to the sequential quantification of GABA and l-glutamate that were produced and consumed, respectively, by lactic acid bacteria, and the results showed good agreement with those obtained using liquid chromatography.  相似文献   

2.
A novel combination of high performance low pressure chromatography with multisyringe flow injection analysis is presented. This system comprises a multisyringe module, three low pressure solenoid valves, a monolithic Chromolith Flash RP-18e column and a diode array spectrophotometer. UV detection is carried out at 250 nm. AutoAnalysis software is used for instrumental control and automated data collection. The results obtained with multisyringe liquid chromatography (MSC) were compared with those obtained with a HPLC system using similar conditions. The chromatographic parameters were calculated from a mixture of anthracene and thiourea using a mobile phase containing acetonitrile-water (60:40) at a flow rate of 2 ml min−1. The proposed MSC system has been successfully applied to the determination of amoxicillin, ampicillin and cephalexin using a mobile phase of sodium acetate buffer (pH 6.2, 0.1 mol l−1)-methanol (90:10) at a flow rate of 2 ml min−1. The low-cost, flexibility and simplicity of MSC should be highlighted.  相似文献   

3.
Tsukatani T  Matsumoto K 《Talanta》2005,65(2):396-401
A method for the sequential enantiomeric quantification of d-malate and l-malate by a single line flow-injection analysis was developed using immobilized-enzyme reactors and fluorescence detection. An immobilized d-malate dehydrogenase (d-MDH) reactor and an immobilized l-malate dehydrogenase (l-MDH) reactor were introduced into the flow line in series. Sample and coenzyme (NAD+ or NADP+) were injected into the flow line by an open sandwich method. d-Malate was selectively oxidized by d-MDH when NAD+ was injected with a sample. When NADP+ was injected with a sample, l-malate was oxidized only by l-MDH. NADH or NADPH produced by the immobilized-enzyme reactors was monitored fluorometrically at 455 nm (excitation at 340 nm). Linear relationships between the responses and concentrations of d-malate and l-malate were observed in the ranges of 1 × 10−6-1 × 10−4 M and 1 × 10−6-2 × 10−4 M, respectively. The relative standard deviations for ten successive injections were less than 2% at the 0.1 mM level. This analytical method was applied to the sequential quantification of d-malate and l-malate in fruit juices and soft drinks, and the results showed good agreement with those obtained using conventional method (F-kit method).  相似文献   

4.
A simple flow injection colourimetric procedure for determining andrographolide was proposed. It is based on the reaction between andrographolide with 3,5-dinitrobenzoic acid, resulting in an intense purplish red complex with a suitable absorption at 536 nm. A standard or sample solution was injected into the 3,5-dinitrobenzoic acid stream (flow rate of 1.0 ml min−1) which was then merged with potassium hydroxide stream with the same flow rate. Optimum conditions for determining andrographolide were investigated by univariate method. Under the optimum conditions, a linear calibration graph was obtained over the range 5.0-150.0 μg ml−1 and the detection limit was 1.50 μg ml−1 (3σ). The relatives standard deviation of the proposed method calculated from 10 replicate injections of 10.0 and 80.0 μg ml−1 andrographolide were 0.66% and 1.64%, respectively. The sample throughput was 50 h−1. The proposed method has been satisfactorily applied to the determination of andrographolide in herb plant samples.  相似文献   

5.
Song ZH  Zhang N 《Talanta》2003,60(1):161-170
A sensitive chemilumimetric method for the determination of novalgin at the sub-nanogram level is presented. The method is based on immobilized luminol and dichromate chemiluminescence detection coupled with a flow injection system. The intensity of the chemiluminescence can be strongly inhibited by novalgin and the decrement of CL intensity was linear with the logarithm of novalgin concentration in the range of 5.0×10−11 to 5.0×10−8 g ml−1. The detection limit is 2.0×10−11 g ml−1 (3σ) and the relative standard deviation is 2.57% (n=5) for a 1.0×10−10 g ml−1 novalgin sample. A typical analytical procedure, including sampling and washing, could be performed in 1 min at a flow rate of 2.0 ml min−1, giving a throughput of 60 h−1. The proposed procedure was applied successfully in pharmaceutical preparations and furthermore the monitoring of novalgin in human urine without any pre-treatment process during 10 h. It was found that the novalgin concentration reached its maximum after orally administrated for about 4 h, and the novalgin metabolism ratio in 10 h was 10.83% in the body of volunteers. The flow system offered reagentless procedures and remarkable stability in determination of novalgin, and could be easily reused over 600 times.  相似文献   

6.
《Analytica chimica acta》2003,481(2):283-290
In the present paper, an on-line system for preconcentration and determination of zinc by Flame Atomic Absorption Spectrometry (FAAS) is proposed. It is based in the sorption of zinc(II) ions on a minicolumn packed with polyurethane foam loaded with 2-[2′-(6-methyl-benzothiazolylazo)]-4-bromophenol (Me-BTABr) reagent. Chemical and flow variables as pH effect, sample flow rate and eluent concentration were optimized using univariate methodology. The results demonstrated that zinc can determinate using the sample pH in the range of 6.5-9.2, sample flow rate of 6.0 ml min−1, and the elution step using 0.10 mol l−1 hydrochloric acid solution at flow rate of 5.5 ml min−1. In these conditions, an enrichment factor of 23 and a sampling rate of 48 samples per hour were achieved. The detection limit (DL, 3σ) as IUPAC recommendation was 0.37 μg l−1 and the precision (assessed as the relative standard deviation, R.S.D.) reached values of 5.9-1.8% in zinc solutions of 1.0-10.0 μg l−1 concentration, respectively. The method was successfully applied to the determination of trace amounts of zinc in natural water samples from Salvador (Brazil).  相似文献   

7.
Continuous-flow (CF) and flow-injection (FI) analysis using the fluoride ion-selective electrode (FISE) as detector have been investigated. The measurements were performed in a home-made cell under appropriate flow conditions (2.86 or 3.45 ml min−1, 0.2 ml samples, 10−6 M sodium fluoride). The calibration graph was obtained by plotting the signal height versus concentration of iron in the range of Fe(III) concentration from 10−5 to 10−1 M in acetate buffer (pH 2.8 or 3.4). In all described procedures, the range of linear response extends to the Fe(III) concentration from 1×10−3 to 1×10−1 M, with detection limit 9×10−5 M. The effect of double-line, two-line flow manifold and CF was investigated and discussed.  相似文献   

8.
A sequential injection analysis system was developed to quantify pH, chloride and nickel in electrolytic baths, in the ranges 1-5 pH units, and 0.1-1.0 and 0.1-1.6 mol l−1, respectively. To enable pH and chloride determination, potentiometric detection with two ion-selective electrodes in a tubular configuration was used. Nickel concentrations were assessed using colorimetric detection at 660 nm. pH was determined prior to nickel determination and just after sample injection (500 μl) into a 0.025 mol l−1 phosphate buffer carrier stream at pH 6.3 and a 9.10 ml min−1 flow rate. For chloride determination, on-line dialysis through a cellulose membrane was used to enable sample dilution and matrix separation. A 25−1 fractional factorial design based on the carrier solution composition and the levels of the hydrodynamic parameters was used for system optimization. At the optimized settings a sampling rate of 40 samples h−1 was attained, with precision and accuracy statistically indistinguishable from those achieved with conventional procedures.  相似文献   

9.
A sensitive chemiluminescence (CL) method, based on the enhancive effect of cobalt(II) on the CL reaction between luminol and dissolved oxygen in a flow injection (FI) system, was proposed for determination of Vitamin B12. The increment of the CL intensity was proportional to the concentration of Vitamin B12, giving a calibration graph linear over the concentration from 2.0×10−10 to 1.2×10−6 g l−1 (r2=0.9992) with the detection limit of 5.0×10−11 g l−1 (3σ). At a flow rate of 2.0 ml min−1, a complete determination of Vitamin B12, including sampling and washing, could be accomplished in 0.5 min with the relative standard deviations (R.S.D.) of less than 5.0%. The proposed method was applied successfully to the determination of Vitamin B12 in pharmaceuticals, human serum, egg yolk and fish tissue.  相似文献   

10.
Spectrographic graphite electrodes were modified through adsorption with laccase from Trametes versicolor. The laccase-modified graphite electrode was used as the working electrode in an amperometric flow-through cell for monitoring phenolic compounds in a single line flow injection system. The experimental conditions for bioelectrochemical determination of catechol were studied and optimized. The relative standard deviation of the biosensor for catechol (10 μM, n=12) was 1.0% and the reproducibility for six laccase-modified graphite electrodes, prepared and used different days was about 11%. The optimal conditions for the biosensor operation were: 0.1 M citrate buffer solution ( at pH 5.0), flow rate of 0.51 ml min−1 and a working potential of −50 mV versus Ag|AgCl. At these conditions the responses of the biosensor for various phenolic compounds were recorded and the sensor characteristics were calculated and compared with those known for biosensors based on laccase from Coriolus hirsutus, cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium and horseradish peroxidase (HRP).  相似文献   

11.
A very sensitive flow injection method with spectrophotometric detection has been developed for the on-line determination of copper in natural waters. The method exhibits a limit of detection three times lower than the most sensitive direct spectrophotometric method previously described and then allows the direct and simple in situ determination of copper in most natural waters.The method was based on the measurement of the absorbance of the coloured complex formed by copper with the chromogenic reagent di-2-pyridyl ketone benzoylhydrazone (dPKBH) in an alkaline medium. This complex presents stoichiometry 1:2 (Cu:dPKBH), and exhibits maximum absorbance at 370 nm. The manifold used was very simple, and consisted of two channels. The first one contained the sample while the second one contained the colorimetric reagent (3.3×10−4 M dPKBH in 10% ethanol), in a 1.6×10−2 M phosphate buffer solution at pH 8. The performance of the system was optimised by using both univariate and modified simplex methodologies. When modified simplex was used, the best signal was obtained for a sample injection volume of 529 μl, a reaction coil length of 1.29 m, and a reagent flow rate of 4.8 ml min−1. Under optimum conditions, the response was linear up to 3 mg l−1 copper, the equation of the straight line being y=0.314x+5.2×10−4 (r2=0.998). The method allowed a sampling frequency of 40 samples per hour and exhibited a precision of 2.11% (as R.S.D., n=11). The limit of detection was 4.6 μg l−1 (calculated as 3sb/m, where sb is the standard deviation of the y-intercept and m represents the slope of the straight line), and was therefore more sensitive than all the direct continuous methods reported previously.The method was successfully applied to the analysis of real water samples, with an average relative error of 5.32%.  相似文献   

12.
A novel kinetic chemiluminescent method using the stopped-flow mixing technique has been investigated for the rapid and sensitive determination of citrate and pyruvate. The method is based on a tris(2,2′-bipyridiyl)ruthenium(III) (Ru(bpy)33+) chemiluminescence (CL) reaction. Ru(bpy)33+ was generated in the mixing chamber by oxidising tris(2,2′-bipyridyl)ruthenium(II) with cerium(IV). After selecting the best operating parameters, calibration graphs were obtained over the concentration ranges 0.38-38 μg ml−1 and 8.7-1300 ng ml−1 for citrate and pyruvate, respectively. The limits of detection were 0.1 μg ml−1 for citrate and 0.3 ng ml−1 for pyruvate. Based on the differential rate of the chemiluminescent reaction corresponding to citrate and pyruvate, a very simple kinetic procedure was developed for the simultaneous determination of both compounds. Mixtures of citrate and pyruvate in ratios between 15:1 and 1.5:1 were satisfactorily resolved. The proposed method was successfully applied to the determination of citrate in pharmaceutical formulations, pyruvate in animal blood serum and both compounds in human urine.  相似文献   

13.
A method for the quantification of total d-gluconate by flow-injection analysis was developed using an immobilized-enzyme reactor and fluorescence detection. d-Gluconate was quantified using co-immobilized gluconate kinase (GK) and 6-phosphogluconate dehydrogenase (PGDH) reactor. d-Gluconate was phosphorylated to 6-phospho-d-gluconate by GK in the presence of ATP, and then the 6-phospho-d-gluconate produced was oxidized by PGDH with NADP+. The NADPH produced by the GK-PGDH reactor was monitored fluorometrically at 455 nm (excitation at 340 nm). A linear relationship between the responses and concentrations of d-gluconate was obtained in the ranges of 1.0 × 10−6-1.6 × 10−4 M. The relative standard deviation for 10 successive injections was 0.57% at the 0.1 mM level. This analytical method was applied to the quantification of d-gluconate in honeys, vinegars and noble rot wines, and the results showed good agreement with those obtained using the conventional F-kit method.  相似文献   

14.
Two highly sensitive chemiluminescence (CL) systems are described. The method is based on the CL generated during the oxidation of luminol by N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) in alkaline medium. The emission intensity is reduced by the presence of some surfactants at concentrations lower than critical micelle concentration (cmc).A new, simple, rapid and selective flow injection CL method for the determination of cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) is proposed. Their determinations are based on the reducing effect on the emission intensity of NBS-luminol and NCS-luminol chemiluminescent reactions. The effect of analytical and flow injection analysis (FIA) variables on these CL systems and on the determination of the cationic surfactants are discussed. The optimum parameters for the determination of cationic surfactants were studied and were found to be the following: luminol, 1×10−6 M; NBS and NCS both, 5×10−2 M; NaOH, 5×10−2 M and flow rate, 3.5 ml min−1.  相似文献   

15.
A new simple, sensitive, rapid and precise flow injection (FI) procedure based on the formation of copper complexes with some angiotensin converting enzyme (ACE) inhibitors has been developed and evaluated for the analysis of lisinopril (LN), enalapril maleate (EP), ramipril (RP) and perindopril tert-butylamine (PD). In this method, samples were injected into a flowing stream of distilled-deionized water, carried through the packed reactor of CuO for derivatization followed by ultraviolet (UV) detection. The flow rate was 1.5 ml min−1 and column temperature was ambient (25 °C). Lisinopril was injected directly into the flowing stream and the detector response was measured at 262 nm. The hydrolysis products of enalapril maleate, ramipril and perindopril tert-butylamine in 0.2N NaOH were injected after neutralization with 1N HCl and the detector response was measured at 272, 265 and 252 nm, respectively. The developed method was successfully applied to the determination of tested drugs in pharmaceutical preparations at a sampling rate of 60 samples h−1 and a recovery near 100% for all compounds.  相似文献   

16.
A simple chemiluminometric method using flow injection has been developed for the determination of paracetamol (acetaminophen), based on the chemiluminescence produced by the reduction of tris(2,2′-bipyridyl)ruthenium(III). The latter is obtained by oxidation of tris(2,2′-bipyridyl)ruthenium(II) by potassium permanganate in dilute sulphuric acid in the presence of paracetamol. A standard or sample solution was injected into the ruthenium(II) stream (flow rate 1.5 ml min−1) which was then merged with potassium permanganate in dilute sulphuric acid stream (flow rate 0.5 ml min−1). The chemiluminescence intensity is enhanced by the presence of manganese(II) ions. Under the optimum conditions, a linear calibration graph was obtained over the range of 0.3-50.0 μg ml−1 and the detection limit was 0.2 μg ml−1 (s/n = 3). The relative standard deviation of the proposed method calculated from 20 replicate injections of 5.0 μg ml−1 paracetamol was 1.1%. The sample throughput was 90 h−1. The method was successfully applied to the determination of paracetamol in commercial pharmaceutical formulations.  相似文献   

17.
In the present work, a rapid and sensitive method for simultaneous determination of penicillin G (PG), benzathine (BE) and procaine (PR) in drug and serum media is introduced. The polar hydro-organic (55/45) mobile phases containing an aqueous solution adjusted to pH = 3.7 and an organic solvent (MeOH) including triethylamine (TEA) and trifluroacetic acid (TFA) are used. The flow rate of 1 ml min−1, a C8 column (150 mm × 46 mm) with 5 μm i.d. and wavelength at 215 nm are selected for optimal separation condition. The limit of detection (LOD), linear concentration range and relative standard deviation (R.S.D.) of this method for the PG are 1.1 μg ml−1, 10-2400 μg ml−1 and 1.7% and for the BE are 1.2 μg ml−1, 12-2100 μg ml−1 and 1.8% and for the PR are 1.5 μg ml−1, 20-2000 μg ml−1 and 2%, respectively. The factorial design is used for the determination of main and interaction effects of pH, flow rate and concentration of MeOH, TEA and TFA in the separation at two levels. Also, the analysis of variance (ANOVA) table is obtained. The results show that TFA and TEA have higher effect than concentration of MeOH, pH and flow rate factors.  相似文献   

18.
A flow injection on-line sorption system was developed for the separation and preconcentration of traces of Ag, Cd, Co, Ni, Pb, U and Y from natural water samples with subsequent detection by ICP TOF MS. Simultaneous preconcentration of the analytes was achieved by complexation with the chelating reagent 1-phenyl-3-methyl-4-benzoylpyrazol-5-one immobilized on the inner walls of a (200 cm × 0.5 mm) PTFE knotted reactor. The analytes were eluted and transported to an axial ICP TOF MS system with 1% (v/v) HNO3 containing 0.3 μg l−1 of Rh as an internal standard using ultrasonic nebulization. The detection limits (3σ) varied from 0.3 ng l−1 for Y to 15.2 ng l−1 for Ni and the precision (R.S.D.) was better than 4%. Using a loading time of 90 s and a sample flow rate of 4.5 ml min−1, enhancement factors of 3-14 were obtained for the different analytes in comparison with their direct determination by ICP TOF MS with ultrasonic nebulization without preconcentration. The accuracy of the method was demonstrated by analysis of water based certified reference materials.  相似文献   

19.
Li Y  Jiang Y  Yan XP 《Talanta》2004,64(3):758-765
A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0 ml min−1 and a total preconcentration time of 180 s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26 μg l−1 for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2 μg l−1 Cr(VI), Co(II) and Ni(II), and 1 μg l−1 Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively.  相似文献   

20.
Quinolones (Qs) can form the complex with Tb(III) ion, and the intramolecular energy transfer from Qs to Tb(III) takes place when excited. And thus the characteristic fluorescence of Tb(III) ion was enhanced and the maximum fluorescence peak locates at 545 nm. The second-order scattering (SOS) peak at 545 nm also appears for the Tb(III)-Qs complexes with the exciting wavelength of 274 nm. When the silver nanoparticles were added to the Tb(III)-Qs system, the luminescence intensity at 545 nm greatly increased. And the relative intensity is proportional to the amount of Qs. Based on this phenomenon, a novel method for determination of quinolones has been developed by using a common spectrofluorometer to measure the intensity of fluorescence and SOS. The luminescence intensity is greatly enhanced by silver nanoparticles in the pH range 5.5-6.2. The calibration graphs for pipemidic acid (PPA) and lomefloxacin (LMFX) are linear in the range 2.0 × 10−10 to 1.0 × 10−5 and 1.0 × 10−9 to 1.0 × 10−5 mol L−1, respectively. The limits of detection are 4.7 × 10−11 mol L−1 for PPA and 1.1 × 10−10 mol L−1 for LMFX. The method was applied satisfactorily to the determination of the two quinolones (Qs) in tablet, capsule, urine and serum samples. The experimental results showed that it is the certain size and certain concentration of silver nanoparticles that can greatly enhance the fluorescence -SOS intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号