首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct electrochemistry and electrocatalysis of horseradish peroxidase (HRP) immobilized on a hyaluronic acid (HA)-single walled carbon nanotubes (SCNs) composite film coated glassy carbon electrode (GCE) was studied for the first time. HRP entrapped in the SCNs-HA composite film exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks in a 0.1 M phosphate buffer solution (pH 7.0). Formal potential vs. standard calomel electrode (E°′) was −0.232 V, and E°′ was linearly dependent on the solution pH indicating that the electron transfer was proton-coupled. The current is linearly dependent on the scan rate, indicating that the direct electrochemistry of HRP in that case is a surface-controlled electrode process. UV-VIS spectrum suggested HRP retained its original conformation in the SCNs-HA film. Immobilized HRP showed excellent electrocatalysis in the reduction of hydrogen peroxide (H2O2).  相似文献   

2.
荣联清  张志凌  林毅  谢娅妮  庞代文 《分析化学》2006,34(12):1683-1687
用魔芋多糖(KGM)和N,N-二甲基甲酰胺(DMF)的加合物,将肌红蛋白(Mb)固定在玻碳电极(GCE)上,制备了稳定的Mb-KGM-DMF/GCE修饰电极,并研究了Mb在修饰电极上的直接电化学行为和电催化性能。该电极在pH=7.0的磷酸盐缓冲溶液(PBS)中,-0.38 V(E0′)处有一对氧化还原峰,峰电位差ΔEp=70 mV,该峰正是Mb中血红素辅基FeⅢ/FeⅡ电对的氧化还原特征峰。在0.2~9.0 V/s扫速的范围内,氧化还原峰峰电流大小和扫描速率成正比,呈现出表面控制行为。在pH为5.0~12.0的范围内,式电位和pH值呈线性关系,表明电子传递过程伴随着质子转移。同时,Mb-KGM-DMF/GCE修饰电极表现出良好的电催化性能,对氧、H2O2有显著的催化作用。在4.70~75.0μmol/L的范围内,其催化峰电流大小与H2O2的浓度有良好的线性关系,其线性回归方程i=0.127 0.093C,r=0.9989,表观米氏常数为80.8μmol/L。  相似文献   

3.
Heme proteins were immobilized on glass carbon electrodes by poly (N-isopropylac-yamide-co-3-methacryloxy-propyl-trimethoxysilane) (PNM) and exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks at about -0.35 V versus a saturated calomel electrode in pH 7.0 buffer solution, corresponding to hemeFe(III)+e-->hemeFe(II). Some electrochemical parameters were calculated by performing nonlinear regression analysis of square wave voltammetry (SWV) experimental data. The formal potential was linearly dependent on pH, indicating the electron transfer of Fe(III)/Fe(II) redox couple accompanied by the transfer of proton. Ultraviolet visible and Fourier transform infrared spectra suggested that the conformation of proteins in the PNM films retained the essential feature of its native secondary structure. Atomic force microscopy images demonstrated the existence of interaction between heme proteins and PNM. N,N-dimethylformamide (DMF) played an important role in immobilizing proteins and enhancing electron transfer between proteins and electrodes. Electrochemical catalytic reductions of hydrogen peroxide and trichloroacetic acid by proteins entrapped in PNM film were also discussed, showing the potential applicability of the film modified electrodes as a biosensor.  相似文献   

4.
The concentration of inorganic sulfide ion liberated from a wide range of proteins denatured in 0.2 M NaOH at 25°C was measured using direct cathodic stripping voltammetry (c.s.v.), as well as by ion selective electrode potentiometry and c.s.v. after separation of the H2S by an isothermal microdiffusion technique. The sulfide produced in 0.2 M NaOH was equivalent to the number of protein disulfide bridges broken, and using several model proteins it was shown that only surface, or solvent-accessible disulfide bonds are attacked. The reaction obeyed first-order kinetics, and the rate was proportional to hydroxide ion concentration. Some simple disulfide compounds were also studied, and possible reaction mechanisms for the formation of sulfide ion are discussed. Some iron proteins were denatured in 0.2 M NaOH and the dissociation of the heme-protein bond was monitored by measuring the iron redox wave at the mercury electrode. Normal and cancerous blood serum samples were analysed by c.s.v. measurement of the sulfide released in alkali, both before and after separation of the albumin and globulin by precipitation and gel permeation chromatography.  相似文献   

5.
The electrochemical reduction of oxygen on glassy carbon (GC) electrodes modified with anthraquinones was studied using cyclic voltammetry (CV) and the rotating disk electrode (RDE) technique. Two methods were used in surface modification. The first method comprised immersion of the polished or anodically pretreated GC electrode in a solution containing 9,10-anthraquinone-2-carboxylic acid (AQ-2-COOH) or its anion (AQ-2-COO) in dimethylsulfoxide (DMSO) or 9,10-anthraquinone-2-ethanoic acid (AQ-2-CH2COOH) or its anion (AQ-2-CH2COO) in N,N-dimethylformamide (DMF). Alternatively, the surface of the GC disk was modified by anodic oxidation of AQ-2-COOH or AQ-2-COO in DMSO or AQ-2-CH2COOH in DMSO or DMF or AQ-2-CH2COO in DMF. The modified electrodes showed electrocatalytic activity toward oxygen reduction in 0.1 M acetate buffer pH (4.8), 0.1 M phosphate buffer (pH 8) and 0.1 M NaOH. Atomic force microscopy (AFM) examination of the modified electrodes was carried out and the differences in surface morphology of various modifications were in evidence.  相似文献   

6.
Adsorption of Cl?, Br?, and I? (Hal?) ions from 0.1 M solutions in methanol (MeOH) is studied on the liquid renewable Ga, (In-Ga), and (Tl-Ga) electrodes by the methods of differential capacitance and jet electrode. It is shown that the adsorption parameters and the series of surface activity of halide ions in MeOH essentially depend on the metal nature. On the (In-Ga) and (Tl-Ga) electrodes, as well as on the Hg electrode, the surface activity of halide ions increases in the series: Cl? < Br? < I?; on the Ga electrode, it varies in another series: Br? < Cl? < I?. The data for the Ga/MeOH interface support the result, which was first obtained on the Ga/N-methyl formamide (N-MF) interface, that the effect of inversion of surface activity series can be observed not only in the aprotic solvents, but also in the protic solvents. The data, which were obtained in MeOH, are compared with the corresponding data, which were obtained in N-MF, dimethyl formamide (DMF), acetonitrile (AN), and water. For Ga, (In-Ga), and (Tl-Ga) electrodes, the adsorption of Hal? varies in the series: H2O < MeOH ≈ N-MF < DMF < AN. The data obtained in MeOH indicate that the energy of metal-Hal? interaction (ΔG M-Hal) increases in the series (Tl-Ga) < (In-Ga) < Ga as the electronic work function increases. This is in agreement with the data, which were obtained in other solvents, and is the evidence for the donor-acceptor nature of metal-Hal? interaction, where the Hal? ions are the donors of electron pair with respect to the metal.  相似文献   

7.
用琼脂糖将肌红蛋白(Mb)固定到玻碳电极(GC)表面,制备了Mb-琼脂糖膜修饰电极。包埋在琼脂糖膜中的Mb在缓冲溶液和乙醇混合溶液中与电极直接传递电子,得到一对对称的Mb辅基血红素Fe(III)/Fe(II)电对的可逆氧化还原峰。其式电势随缓冲溶液pH值增加而负移,且呈线性关系,这说明Mb的电子传递过程伴随有质子的转移。在缓冲溶液和乙醇混合溶液中,固定化肌红蛋白表现出类似细胞色素P450的催化活性,能快速催化还原氯乙烷(六氯乙烷、五氯乙烷、四氯乙烷)脱氯,Mb-琼脂糖膜修饰电极具有较好的稳定性和重现性,可用于这些物质的定量检测。  相似文献   

8.
In the present work, nickel-zeolite modified carbon paste electrode (Ni-ZMCPE) was prepared. The electrochemical behaviour of hydrogen peroxide at the surface of modified electrode was investigated by cyclic voltammetry and chronoamperometry in 0.1 M NaOH supporting electrolyte. The electrochemical characterization of Ni-ZMCPE exhibits redox behavior of Ni(III)/Ni(II) couple in alkaline medium. It has been shown that Ni-ZMCPE improves efficiency of the modified electrode toward hydrogen peroxide electrooxidation (It wasn’t remarkable different on ZMCPE and CPE in the presence and absence of hydrogen peroxide). Moreover, the effects of various parameters such as effect of different percents of Ni-Z to graphite, effect of pH and hydrogen peroxide concentration on the electrooxidation of hydrogen peroxide as well as stability of the Ni-ZMCPE have also been investigated. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of hydrogen peroxide in the range 0.03–0.1 and 0.3–6 mM with amperometric method. The detection limit (S/N = 3) was also estimated to be 1 μM.  相似文献   

9.
S. Ashok Kumar 《Talanta》2007,72(2):831-838
The adsorption processes and electrochemical behavior of 4-nitroaniline (4-NA) adsorbed onto glassy carbon electrodes (GCE) have been investigated in aqueous 0.1 M nitric acid (HNO3) electrolyte solutions using cyclic voltammetry (CV). 4-NA adsorbs onto GCE surfaces, and upon potential cycling past −0.2 V, is transformed into the arylhydroxylamine (ArHA) derivative which exhibits a well-behaved pH dependent redox couple centered at 0.32 V at pH 1.5. It is noted as arylhydroxylamine modified glassy carbon electrodes (HAGCE). This modified electrode can be readily used as an immobilization matrix to entrap proteins and enzymes. In our studies, myoglobin (Mb) was used as a model protein for investigation. A pair of well-defined reversible redox peaks of Mb (Fe(III)-Fe(II)) was obtained at the Mb/arylhydroxylamine modified glassy carbon electrode (Mb/HAGC) by direct electron transfer between the protein and the GCE. The formal potential (E0), the apparent coverage (Γ*) and the electron-transfer rate constant (ks) were calculated as −0.317 V, 8.26 × 10−12 mol/cm2 and 51 ± 5 s−1, respectively. Dramatically enhanced biocatalytic activity was exemplified at the Mb/HAGC electrode by the reduction of hydrogen peroxide (H2O2), trichloroacetic acid (TCA) and oxygen (O2). The Mb/arylhydroxylamine film was also characterized by UV-visible spectroscopy (UV-vis), scanning electron microscope (SEM) indicating excellent stability and good biocompatibility of the protein in the arylhydroxylamine modified electrode. This new Mb/HAGC electrode exhibited rapid electrochemical response (2 s) for H2O2 and had good stability in physiological condition, showing the potential applicability of the films in the preparation of third generation biosensors or bioreactors based on direct electrochemistry of the proteins.  相似文献   

10.
Xylene/N,N-dimethylformamide (DMF) and xylene/ethanol were employed as mixed solvents, respectively, for the reverse atom transfer radical polymerization (R-ATRP) of styrene with the azobisisobutyronitrile (AIBN)/CuBr2/N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA) initiating system. With a limited amount of DMF added in, CuBr2/PMDETA complex could dissolve well in the reaction system, so the control of polymerization was enhanced compared with the one in which simplex xylene was used as solvent. But the polarity of DMF leaded kinetics to deviation from first order. Ethanol could also improve the solubility of catalyst and be scavenged quickly by argon at 110°, therefore the impact of polarity of solvent on kinetics was negligible. Induction periods were not observed here indicating rapidly establishment of equilibrium between Cu(I) and Cu(II). This method that adding a little amount of polar solvent with low boiling point into non-polar solvent gives a new way to solve the problem of poor solubility of the catalyst in R-ATRP.  相似文献   

11.
Carbon nanofibers (CNFs) were electrodeposited on indium tin oxide (ITO) electrodes by using a DC electric field from N,N′-dimethylformamide (DMF). An improved dispersion of CNFs has been found in DMF solution compared to ethanol and acetonenitrile. After treated by concentrated H2SO4/HNO3, CNFs were dispersed uniformly and stably in DMF. During the electrodeposition process, CNFs moved towards anode indicating the negative charge of the nanofibers. Effects of electric field strength, CNF concentration in the suspension, and the solvents used for CNF dispersion were examined on the deposition nature of CNFs.  相似文献   

12.
储能材料的性能在很大程度上取决于它们的结构和形貌。我们使用简单的溶剂热方法,通过改变溶剂合成了不同形貌的Ni-1,3,5-苯三甲酸(Ni-BTC)和Ni-1,4-苯二甲酸(Ni-BDC)金属有机骨架材料。Ni-BTC有不规则块状、球状和八面体3种形貌,Ni-BDC有纳米片状、花状和不规则块状3种形貌。对Ni-BTC和Ni-BDC作为超级电容器电极材料的性能进行了研究。结果表明,通过溶剂热方法,在N,N-二甲基甲酰胺(DMF)溶剂中合成出的Ni-BTC和Ni-BDC电极材料的超级电容器性能要优于乙醇(EtOH)和DMF/EtOH (50:50,V/V)溶剂。  相似文献   

13.
A new grafted polymer electrode (GPE) (polystyrene as polymer) was grafted with acrylonitrile as a monomer using gamma irradiation to produce a new grafted polymer. The redox process of K3Fe(CN)6 during cyclic voltammetry was studied by the new GPE. The ratio of Ipc/Ipa >1 of GPE to GCE Ipc/Ipa = 1.7, indicating that this electrode is a reversible electrode and can be used in conductivity studies by voltammetric analysis. The physical properties of the new electrode GP have good hardness, insolubility, and stability at different high temperatures and at different pH. Also, the sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, electrolyte, and scan rate. At different scan rates, two oxidation peaks and two reduction peaks of Fe(III) were observed in a reversible process: Fe(III) Fe(II), and Fe(II) Fe(0). Interestingly, the redox reaction of Fe(III) solution using GPE remained constant even after 15 cycles. It is therefore evident that the GPE possesses some degree of stability. The potential use of the grafted polymer as a useful electrode material is therefore clearly evident.  相似文献   

14.
A novel type of glucose sensor was fabricated based on a glucose oxidase (GOD)-N,N-dimethtylformamide (DMF)-[BMIm][BF4] composites modified three-dimensional ordered macroporous (3DOM) gold film electrode. The immobilized GOD exhibits a pair of well-defined reversible peaks in 50 mM pH 7.0 phosphate buffer solutions (PBS), which could be attributed to the redox of flavin adenine dinucleotide (FAD) in GOD. The research results show that ionic liquid ([BMIm][BF4]), DMF and 3DOM gold film are crucial for GOD to exhibit a pair of stable and reversible peaks. It is believed that the large active area of 3DOM gold film can increase the amount of immobilized GOD. Simultaneously, the application of IL enhances the stability of GOD and facilitates the electron transfer between GOD and the electrode. The synergetic effect of DMF can help the GOD to maintain its bioactivity better. GOD immobilized on the electrode exhibits the favorable electrocatalytic property to glucose, and the prepared sensor has a linear range from 10 to 125 nM with a detection limit of 3.3 nM at a signal-to-noise ratio of 3σ. The apparent K m (Michaelis- Menten constant) for the enzymatic reaction is 0.018 mM.  相似文献   

15.
《Electroanalysis》2004,16(8):627-632
The direct electrochemistry of catalase (Ct) was accomplished at a gold electrode modified with single‐wall carbon nanotubes (SWNTs). A pair of well‐defined redox peaks was obtained for Ct with the reduction peak potential at ?0.414 V and a peak potential separation of 32 mV at pH 5.9. Both reflectance FT‐IR spectra and the dependence of the reduction peak current on the scan rate revealed that Ct adsorbed onto the SWNT surfaces. The redox wave corresponds to the Fe(III)/Fe(II) redox center of the heme group of the Ct adsorbate. Compared to other types of carbonaceous electrode materials (e.g., graphite and carbon soot), the electron transfer rate of Ct redox reaction was greatly enhanced at the SWNT‐modified electrode. The peak current was found to increase linearly with the Ct concentration in the range of 8×10?6–8×10?5 M used for the electrode preparation and the peak potential was shown to be pH dependent. The catalytic activity of Ct adsorbates at the SWNTs appears to be retained, as the addition of H2O2 produced a characteristic catalytic redox wave. This work demonstrates that direct electrochemistry of redox‐active biomacromolecules such as metalloenzymes can be improved through the use of carbon nanotubes.  相似文献   

16.
Myoglobin (Myb) was successfully immobilized on a room temperature ionic liquid (RTIL), 1‐ethyl‐3‐methyl imidazolium tetrafluoroborate ([EMIM][BF4]) modified basal plane graphite (BPG) electrode. The electrochemical behavior of Myb on RTIL modified BPG electrode was explored and the results from cyclic voltammetry (CV) showed a well‐defined and quasi‐reversible CV peaks with a formal potential of ?0.379 V (versus Ag/AgCl) in a phosphate buffer solution (pH 7.0). RTIL shows an obvious promotion for the direct electron‐transfer between Myb and BPG electrode. Myb adsorbed on electrode surface exhibits an obvious electrocatalytic activity for the reduction of nitric oxide (NO). The catalytic current is corresponding linearly to the NO concentration in the range of 7.0×10?7 to 7.0×10?6 M with a limit of detection of 2.0×10?7 M (three times the ratio of signal to noise, S/N=3).  相似文献   

17.
Li J  Yu J  Zhao F  Zeng B 《Analytica chimica acta》2007,587(1):33-40
The direct electrochemistry of glucose oxidase (GOD) entrapped in nano gold particles (NAs)-N,N-dimethylformamide (DMF)-1-butyl-3-methylimidazolium hexafluophosphate (BMIMPF6) composite film on a glassy carbon electrode (NAs-DMF-GOD (BMIMPF6)/GC) has been investigated for first time. The immobilized GOD exhibits a pair of well-defined reversible peaks in 0.050 M pH 5 phosphate solutions (PS), resulting from the redox of flavin adenine dinucleotide (FAD) in GOD. The peak currents are three times as large as those of GOD-NAs-DMF film coated GC electrode (i.e. NAs-DMF-GOD (water)/GC). In addition, the NAs-DMF-GOD (BMIMPF6) composite material has higher thermal stability than NAs-DMF-GOD (water). Results show that ionic liquid BMIMPF6, DMF and NAs are requisite for GOD to exhibit a pair of stable and reversible peaks. Without any of them, the peaks of GOD become small and unstable. Upon the addition of glucose, the peak currents of GOD decrease and a new cathodic peak occurs at −0.8 V (versus SCE), which corresponds to the reduction of hydrogen peroxide (H2O2) generated by the catalytic oxidation of glucose. The peak current of the new cathodic peak and the glucose concentration show a linear relationship in the ranges of 1.0 × 10−7 to 1.0 × 10−6 M and 2.0 × 10−6 to 2.0 × 10−5 M. The kinetic parameter Imax of H2O2 is estimated to be 1.19 × 10−6 A and the apparent Km (Michaelis-Menten constant) for the enzymatic reaction is 3.49 μM. This method has been successfully applied to the determination of glucose in human plasma and beer samples, and the average recoveries are 97.2% and 99%, respectively.  相似文献   

18.
Glassy carbon (GC) electrode modified with a self‐assembled monolayer (SAM) of 1,8,15,22‐tetraaminophthalocyanatocobalt(II) (4α‐CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α‐CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α‐CoIITAPc. The SAM showed two pairs of well‐defined redox peaks corresponding to CoIII/CoII and CoIIIPc?1/CoIIIPc?2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10?9 to 30×10?9 M with a detection limit of 1.4×10?10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.  相似文献   

19.
The single‐electron transfer living radical polymerization (SET‐LRP) of N‐isopropylacrylamide (NIPAM) from silicon wafer modified with an initiator layer composed of 2‐bromopropionyl bromide (2‐BPB) fragments is described. The amount of Cu(0) generated in situ by the disproportination of Cu(I) to Cu(0) and Cu(II) in the presence of 2,2′‐bipyridine (2,2′‐bpy) ligand and N,N‐dimethylformamide (DMF) solvent at 90 °C is dependent on the ratio of [CuBr]/[CuBr2]. By proper selection of the [CuBr]/[CuBr2] ratio, well‐controlled SET‐LRP polymerization of NIPAM was observed such that the thickness of the layer consisting of chains grown from the surface increased linearly with the molecular weight of chains polymerized in solution in identical. In addition, the calculation of grafting parameters, including surface coverage, σ (mg/m2); grafting density, Σ (chain/nm2); and average distance between grafting sites, D (nm), from the number‐average molecular weight, M n (g/mol), and ellipsometric thickness, h (nm), values indicated the synthesis of densely grafted poly(NIPAM) films and allowed us to predict a “brush‐like” conformation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
The influence of a polyampholyte, i.e., poly(N,N′-diallyl-N,N′-dimethyl-altmaleamic carboxylate) (PalH), on the lamellar liquid crystalline (LC) system sodium dodecyl sulfate (SDS)/decanol/water was investigated by means of microdifferential scanning calorimetry, small-angle X-ray diffraction (SAXS), and cryo-scanning electron microscopy. After incorporating PalH into the lamellar liquid crystalline system, SAXS measurements show that three different LC phases exist: i.e., a swelling, slightly swelling, and non-swelling one. At pH 4, the positively charged polymer with an extended conformation can directly adsorb at the anionic head groups of the surfactant and more compact vesicles are formed at room temperature. At pH 9, the electrostatic interactions between the polyampholyte (in a more coiled conformation) and the sulfate head groups of the SDS are leveled off and incompact vesicles are formed at room temperature. That means in presence of the polyampholyte the morphology of the LC phase, i.e., the supramolecular vesicle structure, can be tuned by varying the pH and/or the temperature.
Figure
pH-dependent tuning of the morphology of the lamellar phase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号