首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The hydrochlorothiazide, 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide-1,1-dioxide, (HCTZ), widely used as a diuretic and anti-hypertensive drug, was transformed into its N-nitroso-derivative, 6-chloro-4-nitroso-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide-1,1-dioxide (ON-HCTZ) by sodium nitrite in an acidic medium. The crystalline complexes of ON-HCTZ with 18-crown-6 (18C6) and cis-anti-cis-dicyclohexyl-18C6 (DCH6B) demonstrated different H-bonding modes from those present in the co-crystals of HCTZ with the same crown ethers. The influence of the nitroso-group on the binding mode and crystal packing is discussed.  相似文献   

3.
4.
The reaction of 1,1,4,4-tetrakis[bis(trimethylsilyl)methyl]-1,4-diisopropyltetrasila-2-yne 1 with secondary or primary amines produced amino-substituted disilenes R(R2′N)SiSiHR 2a-d (R = SiiPr[CH(SiMe3)2]2, R2′NEt2N (2a), (CH2CH2)2N (2b), tBu(H)N (2c), and Ph2N (2d)). Spectroscopic and X-ray crystallographic analyses of 2 showed that 2a-c have a nearly coplanar arrangement of the SiSi double bond and the amino group, giving π-conjugation between the SiSi double bond and the lone pair on the nitrogen atom, whereas 2d has a nearly perpendicular arrangement precluding such conjugation. Theoretical calculations indicate that π-conjugation between the π-orbital of the SiSi double bond and the lone pair on the nitrogen atom is markedly influenced by the torsional angle between the SiSi double-bond plane and the amino-group plane.  相似文献   

5.
In situ OH metalation with iBu2AlH and hydrozirconation with HZrCp2Cl of HOCH2CCH, (E)-HOCH2CHCHCCH, and HOCH2CCCH3 followed by Pd-catalyzed alkenyl-alkenyl coupling with (E)-BrCHCHCO2Et and (E)-BrCHC(Me)CO2Et using PEPPSI-IPr (7) as a catalyst provides a highly efficient and selective (?98% all-E) route to ω-hydroxy di- and trienoic acid esters (1a-6a). The corresponding phosphonate esters (1c-4c) of ?98% isomeric purity can be obtained via conventional bromination-phosphonation in >80% yields. As expected, their carbonyl olefination is ca. 85-90% E-selective with alkyl aldehydes but ?98% E-selective with PhCHO and some α,β-unsaturated aldehydes under the conditions used.  相似文献   

6.
The novel bis(iminophosphorano)methanes CH2[P{NP(S)(OR)2}Ph2]2 (R = Ph (1a), Et (1b)) have been obtained by oxydation of dppm with the corresponding thiophosphorylated azides (RO)2P(S)N3. Deprotonation of 1a,b with KH generates the methanide species KCH[P{NP(S)(OR)2}Ph2]2 (R = Ph (2a), Et (2b)). The ruthenium(II) dimer [{Ru(η6-p-cymene)(μ-Cl)Cl}2] reacts with 2a,b to afford the cationic complexes [Ru(η6-p-cymene)(κ3-C,N,S-CH[P{NP(S)(OR)2}Ph2]2)]+ (R = Ph (3a), Et (3b)), via selective κ3-C,N,S-coordination of the bis(iminophosphorano)methanide anions to ruthenium. The structure of [Ru(η6-p-cymene)(κ3-C,N,S-CH[P{NP(S)(OEt)2}Ph2]2)][PF6] (3b) has been confirmed by single-crystal X-ray crystallography. Deprotonation of complexes 3a,b with NaH leads to the neutral carbene derivatives [Ru(η6-p-cymene)(κ2-C,N-C[P{NP(S)(OR)2}Ph2]2)] (R = Ph (4a), Et (4b)).  相似文献   

7.
Various phosphorus-supported fluorescent probes have been synthesized by the condensation reaction of multi-functional phosphorus hydrazides with various fluorophore-containing carboxaldehydes. Compounds, thus prepared, in this study are (PhO)2P(O)[N(Me)-NCH-R] (1a, 1b), Ph2P(O)[N(Me)-NCH-R] (2b, 2c, 2d), PhP(O)[N(Me)-NCH-R]2 (3b, 3c), P(S)[N(Me)-NCH-R]3 (4b, 4c), P(O)[N(Me)-NCH-R]3 (5a, 5b, 5c), N3P3(O2C12H8)2[N(Me)-NCH-R]2 (6a, 6b, 6c), N3P3(O2C12H8)[N(Me)-NCH-R]4 (7a, 7b, 7c, 7d) and N3P3[N(Me)-NCH-R]6 (8b, 8c), where R=1-pyrenyl (a), 9-anthracenyl (b), 9-phenanthryl (c) and 7-(N,N′-diethylamino)-3-coumarinyl (d). All of these compounds have been characterized by various analytical techniques including 31P{1H} NMR spectroscopy. Compounds 1b, 2b, 3b, 4b, 5b, 5c and 6d have also been characterized by single crystal X-ray analysis. All of these phosphorus-supported compounds exhibit excellent fluorescence properties in aqueous solution at near physiological conditions.  相似文献   

8.
9.
The condensation of (butyl)thiocarbene tungsten complex [(OC)5WC(SEt)Bu] (1a) with an α,β-unsaturated secondary acid amide R2CHCHC(O)NHR14 in the presence of POCl3/Et3N gives cyclopentadienimines 12, whereas the isostructural alkoxycarbene complex [(OC)5WC(OEt)Bu] (1c) under similar conditions affords a (N-enamino)ethoxycarbene compound 9. Furthermore, condensation of the (methyl)thiocarbene tungsten complex [(OC)5WC(SEt)Me] (1b) with an amide 4 yields cyclopentenimines 19 and allenylidene complexes 20, whereas the corresponding ethoxycarbene complex [(OC)5WC(OEt)CH3] (1d) forms 4-NH-amino-1-tungsta-1,3,5-hexatrienes 16 under similar conditions.  相似文献   

10.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

11.
Treatment of the thiosemicarbazones 4-FC6H4C(Me)NN(H)C(S)NHR, (R = Me, a; Ph, b) and 2-ClC6H4C(Me)NN(H)C(S)NHR (R = Ph, c) with lithium tetrachloropalladate(II) in methanol or palladium(II) acetate in acetic acid gave the tetranuclear cyclometallated complex [Pd{4-FC6H3C(Me)NNC(S)NHR}]4 (1a, 1b) and [Pd{2-ClC6H3C(Me)NNC(S)NHPh}]4 (1c). Reaction of these tetramers with the diphosphines dppe, t-dppe, dppp or dppb in a 1:2 molar ratio gave the dinuclear cyclometallated complexes [(Pd{4-FC6H3C(Me)NNC(S)NHR})2(μ-Ph2P(CH2)nPPh2)], (n = 2, 2a, 2b; 3, 4a, 4b; 4, 5a, 5b), [(Pd{4-FC6H3C(Me)NNC(S)NHPh})2(μ-Ph2PCHCHPPh2)], (3a, 3b) and [(Pd{2-ClC6H3C(Me)NNC(S)NHR})2(μ-Ph2P(CH2)nPPh2)], (n = 2, 2c, 2d; 3, 4c, 4d; 4, 5c, 5d), [(Pd{2-ClC6H3C(Me)NNC(S)NHPh})2(μ-PPh2CHCHPPh2)], (3c, 3d). The X-ray crystal structure of the ligand b and the complexes 3c, 4a and 4d were determined. The structures of complexes 4a and 4d show that the different disposition of the chain cyclometallated of the thiosemicarbazones (in the same orientation or in the opposite one) is due to the different H bonds produced.  相似文献   

12.
Heterocyclic carbene complexes are accessible from π-donor-substituted allenylidene complexes, [(CO)5CrCCC(NMe2)Ph] (1) and [(CO)5CrCCC(O-endo-Bornyl)OEt] (4), and various dinucleophiles by 1,2,3-diheterocyclization. The reaction of 1 with 1,2-dimethylhydrazine gives the 1,2-dimethylpyrazolylidene complex (2) in high yield in addition to small amounts of the α,β-unsaturated carbene complex [(CO)5CrC(NMe2)-C(H)C(NMe2)Ph] (3). The analogous reaction of 4 with 1,2-dimethylhydrazine affords the 1,2-dimethylpyrazolylidene complex (5) and, via displacement of the Cγ-bound ethoxy substituent, the hydrazinoallenylidene complex [(CO)5CrCCC(O-endo-Bornyl){NMe-N(H)Me}] (6). Treatment of 6 with catalytic amounts of acids induces cyclization to 5. On addition of 1,1-dimethylhydrazine to 1 the zwitterionic pyrazolium-5-ylidene complex (7) is formed. The reaction of 1 with 1,2-diaminocyclohexane affords a octahydro-benzo[1,4]diazepinylidene complex (10) and, via intermolecular substitution, a binuclear bisallenylidene complex (11). Thiazepinylidene complexes (12-14), containing 7-membered N/S-heterocyclic carbene ligands, are formed highly selectively in the reaction of 1 with 2-aminoethanethiol or related cysteine derivatives by a substitution/cyclization sequence. The analogous reaction of 1 with homocysteine methylester yields a thiazocanylidene complex (15). All new heterocyclic carbene ligands are strong donors exhibiting σ-donor/π-acceptor ratios similar to those of the known imidazolylidene complexes. On photolysis of 2 and 12 in the presence of triphenylphosphine, the corresponding cis-carbene tetracarbonyl triphenylphosphine complexes (16 and 17) are formed. The solid state structure of complexes 2, 7, 14, 15, and 16 is established by X-ray structural analysis.  相似文献   

13.
Wittig olefination of 3-aminoquinoline-2,4(1H,3H)-diones 1 with ethyl (triphenylphosphoranylidene)acetate (Ph3PCHCO2Et) afforded (E)-3-amino-4-ethoxycarbonylmethylene-1,2,3,4-tetrahydro-2-quinolones (E)-2 and pyrrolo[2,3-c]quinoline-2,4(3aH,5H)-diones 3. An alternative approach for the synthesis of 3 via 3-bromoacetamidoquinoline-2,4(1H,3H)-diones 7, their corresponding triphenylphosphonium salts 8, and ylides A that undergo intramolecular Wittig reaction, was investigated. Under the applied reaction conditions, the phosphonium salts 8 and ylides A are so unstable that they partly decompose to 3-acetamidoquinoline-2,4(1H,3H)-diones 9 during the synthesis of 3.  相似文献   

14.
A series of heterobinuclear ferrocene-ruthenium complexes Fc(CHCH)nRuCl(CO)(PMe3)3 (n = 1, 3; n = 2, 12), Fc(CHCH)RuCl(CO)(Py)(PPh3)2 (4), and trimetallic Fc(CHCH)RuCl(CO)(PPh3)2(Py-E-(CHCH)Fc) (6) have been prepared. The length of the molecular rods is extended by successive insertion of CHCH spacers in the bridging ligands or the ancillary ligands. The respective products have been fully characterized and the structures of 3 and 12 have been established by X-ray crystallography. Electrochemical studies have revealed that ethenyl heterobimetallic complexes display two successive one-electron processes, and that intermetallic electronic communication between the two endgroups is attenuated with the increase of the length of the conjugated bridge. The electrochemical behavior of the trimetallic complex reveals strong electronic communication between ruthenium and ferrocene transmitted through the ethenyl bridge, however, it also reveals a very weak interaction between ruthenium and ferrocene transmitted through the (E)-CHCH-Py bridge.  相似文献   

15.
16.
17.
The preparation of several ruthenium complexes containing cyanocarbon anions is reported. Deprotonation (KOBut) of [Ru(NCCH2CN)(PPh3)2Cp]PF6 (1) gives Ru{NCCH(CN)}(PPh3)2Cp (2), which adds a second [Ru(PPh3)2Cp]+ unit to give [{Ru(PPh3)2Cp}2(μ-NCCHCN)]+ (3). Attempted deprotonation of the latter to give the μ-NCCCN complex was unsuccessful. Similar chemistry with tricyanomethanide anion gives Ru{NCC(CN)2}(PPh3)2Cp (4) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)CN}]PF6 (5), and with pentacyanopropenide, Ru{NCC(CN)C(CN)C(CN)2}(PPh3)2Cp (6) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)C(CN)C(CN)CN}]PF6 (7). The Ru(dppe)Cp* analogues of 6 and 7 (8 and 9) were also prepared. Thermolysis of 6 (refluxing toluene, 12 h) results in loss of PPh3 and formation of the binuclear cyclic complex {Ru(PPh3)Cp[μ-NC{C(CN)C(CN)2}CN]}2 (10). The solid-state structures of 2-4 and 8-10 have been determined and the nature of the isomers shown to be present in solutions of the binuclear cations 7 and 9 by NMR studies has been probed using Hartree-Fock and density functional theory.  相似文献   

18.
Bimetallic alkylidene complexes of tungsten (R′O)2(ArN)WCH-SiR2-CHW(NAr)(OR′)2 (R = Me (1), Ph (2)) and (R′O)2(ArN)WCH-SiMe2SiMe2-CHW(NAr)(OR′)2 (3) (Ar = ; R′ = CMe2CF3) have been prepared by the reactions of divinyl silicon reagents R2Si(CHCH2)2 with known alkylidene compounds R′′-CHMo(NAr)(OR′)2. (R′′ = But, PhMe2C) Complexes 1-3 were structurally characterized. Ring opening metathesis polymerization (ROMP) of cyclooctene using compounds 1-3 as initiators led to the formation of high molecular weight polyoctenamers with predominant trans-units content in the case of 1 and 3 and predominant cis-units content in the case of 2.  相似文献   

19.
A Mo(0) complex containing a new tetraphosphine ligand [Mo(P4)(dppe)] (1; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2, dppe = Ph2PCH2CH2PPh2) reacted with CO2 (1 atm) at 60 °C in benzene to give a Mo(0) carbonyl complex fac-[Mo(CO)(η3-P4O)(dppe)] (2), where the O abstraction from CO2 by one terminal P atom in P4 takes place to give the dangling P(O)Ph2 moiety together with the coordinated CO. On the other hand, reaction of 1 with TolNCS (Tol = m-MeC6H4) in benzene at 60 °C resulted in the incorporation of three TolNCS molecules to the Mo center, forming a Mo(0) isocyanide-isothiocyanate complex trans,mer-[Mo(TolNC)22-TolNCS)(η3-P4S)] (4), where the S abstraction occurs from two TolNCS molecules by P4 and dppe to give the η3-P4S ligand and free dppeS, respectively, together with two coordinated TolNC molecules. The remaining site of the Mo center is occupied by the third TolNCS ligating at the CS bond in an η2-manner. The X-ray analysis has been undertaken to determine the detailed structures for 2 and 4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号