首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel positively charged single-isomer of β-cyclodextrin, mono-6-deoxy-6-(3R,4R-dihydroxypyrrolidine)-β-CD chloride (dhypy-CDCl), was synthesized and employed as a chiral selector for the first time in capillary electrophoresis (CE) for the enantioseparation of anionic and ampholytic acids. The effects of the running buffer pH, chiral selector concentration, analyte structure and organic modifier on the enantioseparation were studied in detail. The chiral selectivity and resolution for most of the studied analytes decreased as the buffer pH increased in the range of 6.0–9.0. Increasing selector concentration led to decreased effective mobility, increased chiral selectivity and resolution for most of the studied analytes. Moreover, the hydroxyl groups located on the dihydroxypyrrolidine substituent of the dhypy-CDCl could have influence on the chiral separation.  相似文献   

2.
Chiral separation of iodiconazole, a new antifungal drug, and 12 new structurally related triadimenol analogues had been developed by capillary electrophoresis (CE) using hydroxypropyl-γ-cyclodextrin (HP-γ-CD) as the chiral selector. The effect of structural features of analytes on Δt and Rs was studied under the optimum separation conditions. Using molecular docking technique and binding energy calculations, the inclusion process between HP-γ-CD and enantiomers was investigated and chiral recognition mechanisms were discussed. The results suggest that hydrogen bonding between fluorine at position 4 of the phenyl group beside the chiral carbon and the hydroxyl group on the HP-γ-CD rim and face to face π–π interactions between two phenyl rings highly contributed to the enantiorecognition process between HP-γ-CD and iodiconazole. The N-methyl group beside chiral carbon also played an important role in enantiomeric separation. Additionally, the big difference in binding energy (ΔΔE) highly contributed to good separation in the presence of HP-γ-CD chiral selector, which may be a helpful initial guide for chiral selector selection and predicting the result of enantioseparation. Furthermore, the new mathematical equation established based on the results of molecular mechanics calculations exhibited good capability in predicting chiral separation of these triadimenol analogues using HP-γ-CD mediated CE.  相似文献   

3.
We describe the use of polystyrene (PS) nanoparticles to manipulate chiral selectivity of propranolol analysis by capillary electrophoresis, by dispersing PS nanoparticles into the run buffer employing hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral selector. Distinct separational differences are observed between the buffer containing PS nanoparticles and buffer without, when changing separating conditions including PS nanoparticles concentration, pH, buffer concentration, HP-β-CD concentration and when adding an organic additive. Selectivity improvements are reflected by changes in the observed mobility as a result of interactions between the propranolol enantiomers and HP-β-CD governing the absorption process on the PS particles surface. The presence of PS nanoparticles increases the enantioseparation at low particle concentration in the presence of HP-β-CD as a chiral selector.  相似文献   

4.
Chen J  Du Y  Zhu F  Chen B 《Journal of chromatography. A》2010,1217(45):7158-7163
Several chiral reagents including cyclodextrins (CDs) and derivatives, crown ethers, proteins, chiral surfactants and polymers have been involved in dual selector systems for enantioseparation of a series of chiral compounds by capillary electrophoresis (CE). In comparison to the chiral reagents above-mentioned, there is no report concerning the use of polysaccharides in dual chiral CE system. In this paper we first investigate the enantioselectivity of polysaccharide-based dual selector systems towards some chiral drugs. During our recent work, glycogen belonging to the class of branched polysaccharides has been used as a novel chiral selector in CE. In this study, three glycogen-based dual chiral CE systems have been established for enantiomeric separations of several racemic basic drugs consisting of duloxetine, cetirizine, citalopram, sulconazole, laudanosine, amlodipine, propranolol, atenolol and nefopam. These three dual systems combined glycogen (neutral polysaccharide) with chondroitin sulfate A (CSA, ionic polysaccharide), β-CD and HP-β-CD, respectively. It was found that the dual system of glycogen/CSA exhibited good enantioselective properties toward the tested drugs. More importantly, compared to the single selector systems, synergistic effect was observed when glycogen was used with CSA for most of the analytes. This indicated the enhancement of enantioseparation observed for these analytes in glycogen/CSA system might be due to some favorable interaction effects between glycogen and CSA. Moreover, in order to evaluate the stereoselectivity of glycogen/CSA, the influences of buffer pH and selector concentration on enantioseparation of the studied drugs were also investigated.  相似文献   

5.
The chiral resolving ability of a novel single-isomer cationic β-cyclodextrin (CD), mono-6A-propylammonium-6A-deoxy-β-cyclodextrin chloride (PrAMCD), as a chiral selector in capillary electrophoresis (CE) is reported in this work for the enantioseparation of hydroxy, carboxylic acids and amphoteric analytes. The effect of chiral selector concentration on the resolution was studied. Good resolutions were achieved for hydroxy acids. Optimum resolutions were obtained even at 3.5 mM CD concentration for carboxylic acids. The electrophoretic method showed good linearity and reproducibility in terms of migration times and peak areas, which should make it suitable for routine analysis. In addition, baseline chiral separation of a six-acid mixture was achieved within 20 min. PrAMCD proved to be an effective chiral selector for acidic analytes.  相似文献   

6.
《Analytical letters》2012,45(17):3177-3186
Abstract

A capillary electrophoresis (CE) method for the simultaneous separation of geometry isomers and enantiomers of nateglinide was built. Several different dyclodextrin (CD) derivatives were tested for the chiral separation of nateglinide, and it was proved that ionic CDs [i.e., carboxymethy-β-CD (CM-β-CD) and sulphonic-β-CD (S-β-CD)] could show better chiral selectivity for both geometry isomers and enantiomers than the neutral CDs. The separation of geometry of both isomers and enantiomers of nateglinide was obtained by CE in a 75-µm i.d. × 60 cm (effective length 45 cm) fused-silica capillary at 11 kV voltage, while 30 mM phosphate (pH = 8.38) acted as running buffer and a mixture of 40 mM S-β-CD + 21 mM CM-β-CD served as chiral selector. The detective wavelength was set at 254 nm.  相似文献   

7.
Enantiomeric separations of several β-amino alcohol drugs, i.e., phenylephrine, epinephrine, norepinephrine, synephrine, and chlorprenaline were performed by capillary electrophoresis using DM-β-CD as a chiral selector. Five test solutes were baseline resolved in six minutes. The effects of DM-β-CD concentration, pH value, ionic strength of the buffer, and the type of β-CDs on resolution were investigated. The results indicated that DM-β-CD is suitable for enantiomeric separation of β-amino alcohols containing a phenyl group on the chiral atom. Enantiorecognition mechanisms for test solutes are also discussed.  相似文献   

8.
A method for capillary electrophoretic enantiomeric separation of a racemic clenbuterol has been established with hydroxypropyl-β-cyclodextrin as the chiral selector. General equations and data analysis are presented to relate mobility to the equilibrium constants in simple binding equilibria and used to determine binding constants and thermodynamic parameters for host-guest complexation of clenbuterol enantiomers with hydroxypropyl-β-cyclodextrin as a selector. The effects of β-cyclodextrin type and concentration, buffer type, concentration and pH, as well as separation voltage and capillary temperature were investigated in detail. A maximal resolution of 6.78 was obtained. The binding constants of the host-guest complex of clenbuterol enantiomers with hydroxypropyl-β-cyclodextrin, K R-CD and K S-CD are 22.50 and 43.09 l mol-1, respectively.  相似文献   

9.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

10.
Capillary electrophoresis (CE) is a powerful separation technique that was used in a wide range of analytical chemical applications. Cyclodextrins(CDs) are the most commonly used chiral selectors in chiral capillary electrophoresis at the present time. Under neutral conditions, however, native CDs are neutral and usually applicable only for the enantioseparation of charged analyses. To overcome this defect we modified α- and β-CD with a L-cysteine moiety and used the CD derivatives as chiral selectors for the separation of a-amino acid enantiomers by the ligand exchange mode.  相似文献   

11.
IntroductionThe separation of chiral substances is a chal-lenge task to analytical chemistry and pharmaceuti-cal chemistry.HPLC[1] and GC[2 ] are the commonchiral separation techniques.Unfortunately,theyare time- consuming and strenuous.In addition,thechiral separation columns are expensive and thebaseline separation is hard to be obtained.Recently,the researches of chiral separationwith capillary electrophoresis have been active[3 ,4 ] .However,the instrument with an optical detectorcosts …  相似文献   

12.
A capillary zone electrophoresis method with HP-β-CD as chiral selector was established for the chiral separation of four stereoisomers of 1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2,3-trihydroxy-propyl)-2-methoxy]-phenoxy-1,3-propandiol for the first time, which were isolated from Hydnocarpus annamensis. The effects of chiral selector type and concentration, buffer composition, pH and concentration, and cartridge temperature on the enantioseparation were investigated. A baseline separation of the four stereoisomers was achieved in less than 18 min under the optimized conditions: 40 mmol L−1 Borax–NaOH buffer (pH 10.02) in the presence of 100 mmol L−1 HP-β-CD at 15°C and 30 kV. The experimental results showed that the method by capillary zone electrophoresis for the separation of four stereoisomers is powerful, sensitive and fast, requires less amounts of reagents, and can be employed as a reliable alternative to other methods.  相似文献   

13.
This study details the use of two permanently positively charged mono-substituted β-cyclodextrin derivatives, 6I -deoxy-6I-(N,N N′,N′,Nt’-pentamethyl-ethylene-1,2-diammonio)-cyclomaltoheptose dichloride (PEMEDA-β-CD) and the newly synthesised 6I-deoxy-6I-(N,N,N′,N′,N′-pentamethyl-propylene-1,3-diammonio)-cyclomaltoheptose (PEMPDA-β-CD) as chiral selectors in capillary electrophoresis. Cyclodextrin (CD) derivatives were tested as additives in various buffers at various pH values with the optional addition of an organic modifier. Fourteen anionogenic analytes were tested, including native amino acids, N-blocked amino acids and profens, which were detected using a UV-VIS detector at optimal wavelengths of 214 nm, 254 nm or 280 nm. A borate buffer (15 mmol L?1) at pH 9.5 without the addition of an organic modifier was chosen as a suitable background electrolyte. In addition, the effect of the concentration of the chiral selector on the separation and enantioseparation of selected analytes was monitored. The additions of cyclodextrin derivatives varied within the concentration range of 0.0–5.0 mmol L?1. Both chiral selectors were suitable for the enantioseparation of N-Boc-d,l-tryptophan, which was already separated on the baseline at 0.5 mmol L?1 concentration of the chiral selector.  相似文献   

14.
In this study, the enantiomer migration order (EMO) of norephedrine (NEP) in the presence of various CDs was investigated by CE. NMR and CE techniques were used to analyze the mechanism of the chiral recognition between NEP enantiomers and four CDs, i.e., native α-CD, β-CD, heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-CD (HDAS-β-CD), and heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD (HDMS-β-CD). EMO was reversed in the presence of α-CD and β-CD, although only minor differences in the structures of the complexes formed between NEP and these CDs could be derived from rotating frame nuclear Overhauser experiments (ROESY). The complexes between the enantiomers of NEP and the sulfated CDs, HDMS-β-CD, and HDAS-β-CD, were substantially different. However, EMO of NEP was identical in the presence of these CDs. HDAS-β-CD proved to be the most suitable chiral selector for the CE enantioseparation of NEP.  相似文献   

15.
基于非手性离子液体的毛细管电泳法拆分3种手性药物   总被引:1,自引:1,他引:0  
夏陈  陈志涛  夏之宁 《色谱》2008,26(6):677-681
建立了以非手性离子液体1-正丁基-3-甲基咪唑氯([BMIM]Cl)为手性分离的添加剂、β-环糊精作为手性选择剂的毛细管区带电泳(CZE)分离扑尔敏、氯霉素前体和氧氟沙星3种对映体的方法,并与未添加[BMIM]Cl的CZE分离情况进行了对比研究。发现[BMIM]Cl对手性药物的拆分有协同作用,不仅能够增加对映体的分离度,还能有效地抑制毛细管内壁对样品分子的吸附作用,改善峰形。采用离子液体辅助手性选择剂(尤其是环糊精)的CZE改进方法,为其他毛细管电泳难以分离的手性药物的分离分析提供了新的方法。  相似文献   

16.
Summary 3-[(3-cholamidopropyl)-dimethylammoniol-1-propane sulfonate (CHAPS) can be used as an effective chiral selector for the separation of dansyl-amino acids by capillary electrophoresis (CE). While CHAPS can serve as an chiral selector, better enantiomeric separation can be performed by using CHAPS not as the sole chiral selector but as one of a [CHAPS-SDS-cyclodextrin] three-component system. In this CHAPS-SDS-CD system, enantiomeric separations of the amino acids can be readily accomplished by judiciously adjusting the pH of the solution, concentrations of CHAPS and SDS, and the concentration and type of CD. All amino acids can be baseline resolved in less than 15 minutes with resolution as high as 2.01 at pH 6.5 with 50 mM of CHAPS and 75 mM of SDS. The resolution is also dependent on the size of the CD. Substantial increase in the resolution can be readily achieved by replacing β-CD with γ-CD. For example, theR s for Leu was increased by four-folds (from 1.65 to 6.29) while the elution time still remains as short as 20 min when β-CD was replaced by γ-CD.  相似文献   

17.
Chiral separation method development is usually very time-consuming due to the diversity in chemical structures of pharmaceutical drug substances as well as the suitable separation conditions and the problem to choose the appropriate chiral selector. This paper shows capillary zone electrophoresis (CZE) which was developed for chiral separation of a basic compound - rivastigmine (RIV) using 30 cm × 50 μm i.d. polyacrylamide (PAA)-coated fused-silica capillary (effective length 20 cm), amine-modified phosphate buffer of pH 2.5 and sulfated-β-CD (S-β-CD) as chiral selector. Other selected native or derivatized cyclodextrins (CDs) were also tested: β-CD (5, 30 mM), carboxymethyl-β-CD (5, 30 mM), dimethyl-β-CD (15 mM), hydroxypropyl-β-CD (5, 30 mM), hydroxypropyl-α-CD (5, 30 mM) and hydroxypropyl-γ-CD (5, 30 mM). Complete enantiomeric separation of RIV was achieved at 20 kV, 18 °C and detection at 200 nm within 8 min with R.S.D. for the absolute migration time reproducibility of less than 2.1%. Rectilinear calibration range was 5.0-500.0 μM of each enantiomer (r = 0.9994-0.9995). The CZE method proposed was used for the control of chiral purity of pharmaceutically active S-RIV and for the analysis of Exelon caps preparation.  相似文献   

18.
采用毛细管电泳法和高效液相色谱法直接拆分2,2′-二羟基-1,1′-联二萘-3,3′-二甲酸(HBNC)对映体.以四种不同的β-环糊精为手性添加剂,考察环糊精的种类与浓度、缓冲液pH值及浓度、分离电压、温度等因素对HBNC分离的影响.结果表明:采用10 mmol/L磺丁基醚-β-环糊精+20 mmol/L磷酸盐缓冲液(pH=7.0),20 kV分离电压,HBNC对映体在20 min内达到基线分离,分离度达到3.31.采用(S)-叔-亮氨酸基-(S)-1-(α-萘基)乙胺手性柱,正己烷-乙醇-三氟乙酸(97∶3∶0.2,V/V)流动相,HBNC对映体在40 min内也基本达到基线分离.  相似文献   

19.
研究了7种新型三唑类抗真菌活性化合物的毛细管电泳法手性分离,利用计算机辅助分子模拟技术研究拆分机理。考察了8种中性环糊精手性添加剂,只有2,6-二甲基-β-环糊精对7种活性化合物都有手性识别能力。在30mmol/L NaH2PO4缓冲液中含2,6-二甲基-β-环糊精30mmol/L,用H3PO4调至pH 2.2,温度20℃,电压20kV,在此条件下7种活性化合物都能达到手性分离,其中4种活性化合物能达到基线分离(Rs>1.5)。应用计算机辅助分子模拟软件Discovery Studio 2.5/Sybyl/Gold模拟2,6-二甲基-β-环糊精与7种活性化合物主客体包结过程,并计算相互结合能,探讨手性识别机理,发现拆分结果与结合能的差异有关,结合能差异越大拆分结果越好。  相似文献   

20.
应用环糊精-毛细管区带电泳体系对手性药物盐酸美西律和盐酸异博定的对映体分离进行了研究。结果表明, 在所研究的手性选择剂α-环糊精, β-环糊精, 二甲基-β-环糊精, 羟丙基β-环糊精和γ-环糊精中, 羟丙基β-环糊精对所研究的手性药物分离效果较好。对盐酸美西律和盐酸异博定的最佳羟丙基-β-环糊精浓度分别为30mmol/L和9mmol/L, 最佳缓冲溶液浓度为100mmol/L Tris-H3PO4(pH2.3)。向缓冲溶液中加入0.05%羟丙基纤维素(HPLC)可改善分离。盐酸美西律获得了接近基线的手性分离, 而盐酸异博定亦获得了较好的分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号