首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
A systematic study of densities and refractive indices of 17 room temperature ionic liquids is presented at four different temperatures ranging from 293 K to 333 K. The ionic liquids are grouped into four families: 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, [Cnmim][Ntf2], ionic liquids (with n = 2, 4, 6, 8, 10, 12, and 14); 1-alkyl-3-methylimidazolium hexafluorophosphate, [Cnmim][PF6], ionic liquids (with n = 4, 6, 8); ionic liquids based on the trihexyl(tetradecyl)phosphonium cation, [P6 6 6 14], combined with the anions bis(trifluoromethylsulfonyl)amide, [Ntf2], acetate, [OAc], and triflate, [OTf]; and [C4mim]-based ionic liquids combined with the anions [OAc], [OTf], methylsulfate [MeSO4], and tetrafluoroborate [BF4]. The data obtained were analysed to determine the effect of (i) temperature, (ii) the alkyl chain length of the 1-alkyl-3-methylimidazolium cation, and (iii) the nature of the anion. Different empirical models for the calculation of the densities of the ionic liquids were tested. Molar refractions were also calculated from the volumetric and refractive index data and the values were discussed with the aim of checking their utility in obtaining insights on the intermolecular forces and behaviour in solution of the different ionic liquids.  相似文献   

2.
The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids (ILs) as solvents has been investigated. The distribution ratio of Sr2+ can reach as high as 103 under certain conditions, much larger than that in DCH18C6/n-octanol system. The extraction capacity depends greatly on the structure of ionic liquids. In IIs-based extraction systems, the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na+ and K+ in the aqueous phase. It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.  相似文献   

3.
Conductances of the aqueous solutions of the ionic liquids, ILs, [1-alkyl-3-methylimidazolium chloride [C n Mim]Cl and [1-alkyl-3-methylimidazolium bromide [C n Mim]Br (n = 9 and 10) have been measured at 288.15, 293.15, 298.15, 303.15, 308.15 and 313.15 K. Critical micelle concentrations (CMCs) were determined from the conductance data. Concentration dependence of the specific conductance is discussed and the limiting equivalent conductance of the ionic liquids was determined and discussed. To define which temperature range should be investigated for the thermodynamic parameters, the Krafft temperature of each IL was investigated. The ionization degree and the thermodynamic parameters (?G m 0 , ?H m 0 , ?S m 0 ) of the micelle formation were also estimated and discussed. The dependency of the CMC on the length of the alkyl chain of the investigated 1-alkyl-3-methylimidazolium ILs was also studied. It is shown that the CMC is directly related to the lipophilicity of the cation.  相似文献   

4.
The solubilities of ionic liquids in the ternary systems (ionic liquid + H2O + inorganic salt) were reported at 298.15 K and atmospheric pressure. The examined ionic liquids are [C4mim][PF6] (1-n-butyl-3-methylimidazolium hexafluorophosphate), [C8mim][PF6] (1-n-octyl-3-methylimidazolium hexafluorophosphate), and [C8mim][BF4] (1-n-octyl-3-methylimidazolium tetrafluoroborate). The examined inorganic salts are the chloride-based salts (sodium chloride, lithium chloride, potassium chloride, and magnesium chloride) and the sodium-based salts (sodium thiocyanate, sodium nitrate, sodium trifluoroacetate, sodium bromide, sodium iodide, sodium perchlorate, sodium acetate, sodium hydroxide, sodium dihydrogen phosphate, sodium phosphate, sodium tetrafluoroborate, sodium sulfate, and sodium carbonate). The effects of the cations and the anions of the ionic liquids and of the inorganic salts on the solubility of the ionic liquids in the ternary solutions were systematically compared and discussed.  相似文献   

5.
Liu Y  Sun X  Luo F  Chen J 《Analytica chimica acta》2007,604(2):107-113
A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C8mim+PF6) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.  相似文献   

6.
The amino acid ionic liquids(AAILs) [C3mim][Gly](1-propyl-3-methylimidazolium glycine) and [C4mim][Gly](1-butyl-3methylimidazolium glycine) have been prepared by the neutralization method and characterized by 1 H NMR spectroscopy and differential scanning calorimetry(DSC).The values of their density,surface tension and refractive index were measured at(298.15 ± 0.05) K.Since the AAILs can form strong hydrogen bonds with water,small amounts of water are difficult to remove from the AAILs by common methods.In order to eliminate the effect of the impurity water,the standard addition method(SAM) was applied to these measurements.A new concept which is called the ionic parachor has been put forward.The [C n mim] + cations were treated as a group of reference ions and the individual values of their ionic parachor were evaluated in terms of an extrathermodynamic assumption.Then,using the values of the ionic parachor of reference ions,the parachor,surface tension γ and refractive index n D of the ionic liquids investigated in this work were estimated.The estimated values correlate quite well with the corresponding experimental values.  相似文献   

7.
Lysozyme crystals in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]BF4), 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-butyl-3-methylimidazolium bromide([C4mim]Br), and 1,3-dimethylimidazolium iodine([dmim]I) were prepared, and the influence of ionic liquids (ILs) on the structure and activity change of lysozyme was investigated. Fourier transform infrared spectroscopy revealed the major secondary structures of α-helix and β-sheet for lysozyme. It was interesting to note that increases of the band near 2,935 and 1,656 cm?1 from Raman spectroscopy are attributed to the unfolding of lysozyme molecules. A shift in amide III from 1,230 to 1,270 cm?1 in adding [dmim]I occurs, indicating a transformation from β-sheet to random coil. With regard to adding [C4mim]BF4, [C4mim]Cl, and [C4mim]Br, α-helix and β-sheet are the predominant structures for lysozyme. The activity study showed that the ILs used brought a positive effect. Especially, [dmim]I leads to a drastic increase in relative activity, and its value reaches 50 %.  相似文献   

8.
In the catalytic hydrogenation of benzene to cyclohexane, the separation of unreacted benzene from the product stream is inevitable and essential for an economically viable process. In order to evaluate the separation efficiency of ionic liquids (ILs) as a solvent in this extraction processes, the ternary (liquid + liquid) equilibrium of 1-alkyl-3-methylimidazolium hexafluorophosphate, [Cnmim][PF6] (n = 4, 5, 6), with benzene and cyclohexane was studied at T = 298.15 K and atmospheric pressure. The reliability of the experimentally determined tie-line data was confirmed by applying the Othmer–Tobias equation. The solute distribution coefficient and solvent selectivity for the systems studied were calculated and compared with literature data for other ILs and sulfolane. It turns out that the benzene distribution coefficient increases and solvent selectivity decreases as the length of the cation alkyl chain grows, and the ionic liquids [Cnmim][PF6] proved to be promising solvents for benzene–cyclohexane extractive separation. Finally, an NRTL model was applied to correlate and fit the experimental LLE data for the ternary systems studied.  相似文献   

9.
Several imidazolium-based ionic liquids (ILs) with varying cation alkyl chain length (C4–C10) and anion type (tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]) and bis(trifluoromethylsulfonyl)imide ([Tf2N])) were used as reaction media in the microwave polymerization of methacrylate-based stationary phases. Scanning electron micrographs and backpressures of poly(butyl methacrylate-ethylene dimethacrylate) (poly(BMA-EDMA)) monoliths synthesized in the presence of these ionic liquids demonstrated that porosity and permeability decreased when cation alkyl chain length and anion hydrophobicity were increased. Performance of these monoliths was assessed for their ability to separate parabens by capillary electrochromatography (CEC). Intra-batch precision (n = 3 columns) for retention time and peak area ranged was 0.80–1.13% and 3.71–4.58%, respectively. In addition, a good repeatability of RSDRetention time = <0.30% and ∼1.0%, RSDPeak area = <1.30% and <4.3%, and RSDEfficiency = <0.6% and <11.5% for intra-day and inter-day, respectively exemplify monolith performance reliability for poly(BMA-EDMA) fabricated using 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) porogen. This monolith was also tested for its potential in nanoLC to separate protein digests in gradient mode. ILs as porogens also fabricated different alkyl methacrylate (AMA) (C4–C18) monoliths. Furthermore, employing binary IL porogen mixture such as 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]) successfully decreased the denseness of the monolith, than when using [C4mim][Tf2N] IL alone, enabling a chromatographic run to be performed with 1:1 ratio produced baseline separation for the analytes. The combination of ILs and microwave irradiation made polymer synthesis very fast (∼10 min), entirely green (organic solvent-free) and energy saving process.  相似文献   

10.
Previously, we reported the selective simultaneous separation of the substrates and products of a transesterification reaction (vinyl butyrate, 1-butanol, butyl butyrate, and butyric acid) through supported liquid membranes (SLMs) based on two ionic liquids (ILs): 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim+][PF6], and 1-octyl-3-methylimidazolium hexafluorophosphate, [omim+][PF6]. The significant differences observed in the selectivity values, attributed to the different nature of the ionic liquid phase used, led us to further investigate this matter.  相似文献   

11.
Extraction of Np4+ and \( {\text{NpO}}_{2}^{2 + } \) was carried out from nitric acid feeds using solutions of N,N,N′,N′-tetra-n-octyldiglycolamide (TODGA) in two imidazolium-based room temperature ionic liquids, viz., 1-butyl-3-methylimidazolium bis(trifluoromethanesulphonyl) imide ([C4mim][NTf2]) and 1-octyl-3-methylimidazolium bis(trifluoromethanesulphonyl) imide ([C8mim][NTf2]). The extraction equilibrium was attained within 2 h for both the metal ions in both the ionic liquids. While a cation exchange mechanism is proposed for the extraction of \( {\text{NpO}}_{2}^{2 + } , \) an ion-pair mechanism of extraction is proposed for the Np4+ ion. The nature of the extracted species was determined by carrying out experiments at varying concentrations of TODGA, and species of the type Np(L)2(NO3)4 and NpO2(L)2+ were found to be extracted in 3 mol·dm?3 HNO3. The identification of these extracted species was also supported from the variable nitrate and C4mim+ ion concentration experiments.  相似文献   

12.
Density functional theory is employed to study the interaction energies between dibenzothiophene (DBT) and 1-alkyl-3-methylimidazolium tetrafluoroborate ([C n mim]+[BF4]?). The structures of DBT, 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim]+[BF4]?), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]+[BF4]?), 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim]+[BF4]?), 1-octyl-3-methylimidazolium tetrafluoroborate ([C8mim]+[BF4]?), [C2mim]+[BF4]?–DBT, [C4mim]+[BF4]?–DBT, [C6mim]+[BF4]?–DBT and [C8mim]+[BF4]?–DBT systems are optimized systematically at the B3LYP/6-31G(d,p) level, and the most stable geometries are obtained by NBO and AIM analyses. The results indicate that DBT and imidazolium rings of ionic liquids are parallel to each other. It is found that the [BF4]? anion prefers to be located close to a C1–H9 proton ring in the vicinity of the imidazolium ring and the most stable gas-phase structure of [C n mim]+[BF4]? has four hydrogen bonds between [C n mim]+ and [BF4]?. There are hydrogen bonding interactions, π–π and C–H–π interactions between [C8mim]+[BF4]? and DBT, which is confirmed by NBO and AIM analyses. The calculated interaction energies for the studied ionic liquids can be used to interpret a better extracting ability of [C8mim]+[BF4]? to remove DBT, due to stronger interactions between [C8mim]+[BF4]? and DBT, in agreement with the experimental results of dibenzothiophene extraction by [C n mim]+[BF4]?.  相似文献   

13.
Baicalin which has multiple biological activities is the main active component of the root of Scutellaria baicalensis Georgi (SBG). Although its isolation and purification by adsorption methods have aroused much interest of the scientific community, it suffered from the poor selectivity of the adsorbents. In this work, an environmentally benign method was developed to prepare ionic liquids (ILs) grafted silica by using IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim]NTf2) and ethanol as reaction media. The IL 1-propyl-3-methylimidazolium chloride ([C3mim]Cl) grafted silica ([C3mim]+Cl@SiO2) was used to adsorb and purify baicalin from the root extract of Scutellaria baicalensis Georgi (SBG). Experimental results indicated that the adsorption equilibrium can be quickly achieved (within 10 min). The adsorption behavior of [C3mim]+Cl@SiO2 for baicalin was in good agreement with Langmuir and Freundlich models and the adsorption was a physisorption process as suggested by Dubinin–Radushkevich model. Compared with commercial resins, [C3mim]+Cl@SiO2 showed the strongest adsorption ability and highest selectivity. After desorption and crystallization, a purity of baicalin as high as 96.5% could be obtained. These results indicated that the ILs grafted silica materials were promising adsorbents for the adsorption and purification of baicalin and showed huge potential in the purification of other bioactive compounds from natural sources.  相似文献   

14.
The C?D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6]DMSO) and the C2?H bond stretching vibrations of 1,1,1,5,5,5‐hexafluoropentane‐2,4‐dione (hfac) ligand in anion are chosen as probes to elucidate the solvent–solute interaction between chelate‐based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10mim]+ and anion [Mn(hfac)3]? of the ILs leads to the blue‐shift of the C?D stretching vibrations of DMSO. The C2?H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate‐based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate‐based ILs are in different microstructure environment in the solution.  相似文献   

15.
A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4 mim][X]) salts. The rotational isomerism of the [C4 mim]+ cation is described: the presence of anti and gauche conformers that has been elucidated in remarkable papers by Hamaguchi et al. Such presence of a conformational equilibrium seems to be a general feature of the room temperature liquids. Then the “localized structure features” that apparently exist in ionic liquids are described. It is hoped that the structural resolving power of Raman spectroscopy will be appreciated by the reader. It is of remarkable use on crystals of known different conformations and on the corresponding liquids, especially in combination with modern quantum mechanics calculations. It is hoped that these interdisciplinary methods will be applied to many more systems in the future. A few examples will be discussed.  相似文献   

16.
考察了1-烷基-3-甲基咪唑类离子液体对柱状假丝酵母脂肪酶(CRL)催化橄榄油水解反应活性的影响,利用电导法确定了磷酸盐缓冲液中Br-,Cl-,[BF4]-系列咪唑离子液体的临界胶束浓度(CMC)和[PF6]-系列咪唑离子液体的溶解度.结果显示,离子液体的阴、阳离子对酶活性的影响规律与离子液体的Kosmotropicity性质无明显关联,但与离子液体在体系中的含量密切相关,在最适离子液体含量时,酶活性达到最高;阳离子[CnMIM]+中的n越大,可促进酶活性的离子液体适宜含量越低;Br-,[BF4]-系列离子液体的浓度超过CMC时则抑制酶活;阴离子对酶活性的最大促进作用顺序为Br->Cl->[BF4]->[PF6]-.离子液体对酶活性的影响随体系pH和温度的不同而改变,在最适离子液体浓度时的最适pH均为7.000.在pH 7.000,30 oC以及[C8MIM]Br离子液体浓度为47.6 mmol/L的最佳条件下,最高相对酶活力和比活力分别达到1734%和54.4 U/mg protein.  相似文献   

17.
The cation exchange mechanism was further investigated during the extraction of Sr 2+ and Cs+ using the extractant dicyclo- hexano-18-crown-6 (DCH18C6) in an ionic liquid (IL)1-ethyl-3-methyimidazolium bis[(trifluoromethyl)sulfonyl]imide (C2 mimNTf2 ). The concentrations of both the cation C2 mim + and the anion NTf2 in aqueous phase were detected. The con-centration of NTf2 in the aqueous phase decreased as Sr2+ or Cs+ exchanged into the IL phase. Addition of C2 mim + or NTf2 as well as the variation of the solubility of C2 mimNTf2 influenced the extraction efficiency of Sr2+ or Cs+ .  相似文献   

18.
Summary. A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4 mim][X]) salts. The rotational isomerism of the [C4 mim]+ cation is described: the presence of anti and gauche conformers that has been elucidated in remarkable papers by Hamaguchi et al. Such presence of a conformational equilibrium seems to be a general feature of the room temperature liquids. Then the “localized structure features” that apparently exist in ionic liquids are described. It is hoped that the structural resolving power of Raman spectroscopy will be appreciated by the reader. It is of remarkable use on crystals of known different conformations and on the corresponding liquids, especially in combination with modern quantum mechanics calculations. It is hoped that these interdisciplinary methods will be applied to many more systems in the future. A few examples will be discussed.  相似文献   

19.
A simple ionic model is revisited. The model starts with the calculation of lattice energy and thus the thermochemical radii of the ions. These radii allow the calculation of other lattice energies and through a Born–Haber cycle to obtain the enthalpy of formation. By using literature available for experimental data, the model was tested to see if it can provide reliable enthalpies of formation values. As presented in this contribution, the method only applies to binary compounds with both simple and complex ions. As examples of the usefulness of this approach, enthalpies of formation of unmeasured crystalline ionic liquids (Hmim+, C2mim+, C4mim+ and NH4+ families) and lanthanide (II) halides were determined. The latter ones were used to address the stability of lanthanide halides in states II and III.  相似文献   

20.
A survey on the effect of ionic liquids (ILs) over the thermal stability of a heavy Mexican oil was performed. ILs used were based on [Cnim]+ and [Cnpyr]+ organic cations with FeCl4 metal anion. Mixtures of heavy crude oil (HCO) with ILs show three oxidation zones: low temperature oxidation (LTO), full deposition (FD) and high temperature oxidation (HTO). Thermal stability and mass loss decrease in the LTO zone but increase in the FD and HTO zones for every ILs used. The activation energy of the oxidation is influenced by the ILs in the HTO zone. It decreases when increasing the size of the organic radical substitute in the cation of the ILs while it increases with the presence of hydroxyl groups. The influence of electronic structure and reactivity indexes are rationalized to understand the variations of activation energy obtained of the reaction systems. Among all cations used, cation-3 (IL-3) shows the greater value of HOMO-LUMO gap as well as the lower activation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号