首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leal LO  Semenova NV  Forteza R  Cerdà V 《Talanta》2004,64(5):1335-1342
A new multisyringe flow injection system for inorganic arsenic determination at trace levels by hydride generation-atomic fluorescence spectrometry (HGAFS) is presented. Preconcentration on a solid-phase was carried out using a column packed with an anion-exchange resin (Amberlite IRA-410). The reagents are dispensed to the system using a multisyringe burette coupled with two multi-port selection valves.

Different parameters were changing in order to make the system as effective as possible. An analytical curve was obtained for arsenic determination between 50 and 2000 ng l−1. This new approach improved five times the sensitivity over a MSFIA–HGAFS technique developed previously by the authors. Detection limit of the proposed technique was (3σb/S) of 30 ng l−1. The relative standard deviation (R.S.D.) of As at 1 μg l−1 was 4.8% (n=7). A sample throughput of 10 h−1 has been achieved. The proposed method has been applied to different reference solid and water materials with satisfactory results.  相似文献   


2.
A new analytical procedure for determination of inorganic antimony and speciation of antimony(III) and antimony(V) is presented. For this purpose, a software-controlled time-based multisyringe flow injection system, which contains a multisyringe burette provided with a multi-port selection valve, was developed. Hydride generation-atomic fluorescence spectrometry was used as a detection technique. A 0.3% (w/v) reducing sodium tetrahydroborate solution, hydrochloric acid (2 M), an antimony solution and a pre-reducing solution of 10% (w/v) KI and 0.3% (w/v) ascorbic acid are dispensed simultaneously into a gas-liquid separation cell with further propulsion of the reaction product into the flame of an atomic fluorescence spectrometer using argon flow. A hydrogen flow was employed to support the flame.The linear range and the detection limit (3sb/S) of the proposed technique were 0.2-5.6 μg l−1 and 0.08 μg l−1, respectively. A sample throughput of 18 samples per hour (corresponding to 80 injections per hour) was achieved. The relative standard deviation for 18 independent measurements was 4.6%. This technique was validated by means of reference solid and water materials with good agreement with the certified values. Satisfactory results for speciation of Sb(III) and Sb(V) by means of the developed technique were obtained.  相似文献   

3.
A software-controlled time-based multisyringe flow-injection system for total inorganic arsenic determination by hydride generation atomic fluorescence spectrometry (HGAFS) has been developed. By using a multisyringe burette coupled with one multiport selection valve, the time-based injection provides precise known volumes of sample, a reducing sodium tetrahydroborate solution and a pre-reducing solution which are dispensed into a gas-liquid separation cell. An argon flow delivers the arsine into the flame of an atomic fluorescence spectrometer. A hydrogen flow has been used to support the flame.Linear calibration graphs for arsenic concentrations between 0.25 and 12 μg l−1 were obtained. The detection limit of the proposed technique (3σb/S) was 0.07 μg l−1. A sample throughput of 36 samples/h (108 injections) has been achieved. The proposed technique has been validated by means of reference solid and water materials with good agreement with the certified values. This method was compared with those reported in previous sequential injection analysis (SIA) and flow-injection analysis (FIA) systems. The proposed method offers a number of advantages in front the usual AFS applications, which are mainly a higher sampling frequency and a significant reduction in reagent consumption.  相似文献   

4.
This review outlines automated methodologies developed for measuring arsenic in environmental samples. We report the state of the art of the most significant methods exploiting multicommutation flow techniques coupled to hydride generation-atomic fluorescence determination. We review analytical methods used and present a comparative evaluation of them. We also discuss the on-line pre-concentration procedure as being of particular interest in the development of fully automated methods.  相似文献   

5.
A new multisyringe flow injection system for total inorganic selenium determination by hydride generation-atomic fluorescence spectrometry (HGAFS) has been proposed. The flow methodology is based on the simultaneous injection of sample in the acid media (50% HCl), a reducing sodium tetrahydroborate solution (0.18%) and a solution of hydrochloric acid (50%) which are dispensed into a gas-liquid separation cell by using a multisyringe burette coupled with one multiport selection valve. The usage of the time-based injection increases the sample throughput and provides precise known volumes of sample. The hydride of selenium is delivered into the flame of an atomic fluorescence spectrometer by means of an argon flow. A hydrogen flow has been used to support the flame.The technique can be applied over a wide range of concentrations of selenium between 0.1 and 3.5 μg l−1 with good repeatability (relative standard deviation (R.S.D.) values 4.6-7% for 1 μg l−1 of Se). The detection limit of the developed technique (3σb/S) was 0.01 μg l−1. A sample throughput was 28 samples per hour (84 injections). The multisyringe technique has been validated by means of reference solid (sea lettuce) and water (hard drinking water) materials with good agreement with certified values. The analytical features were compared with those obtained by using of the commercial flow injection analysis (FIA) system. The proposed method provides a higher sampling frequency and a significant reduction of reagent and sample consumption in front the flow injection application.  相似文献   

6.
Maya F  Estela JM  Cerdà V 《Talanta》2008,74(5):1534-1538
A multisyringe flow injection system (MSFIA) with spectrophotometric detection is proposed as a fast, robust and low-reagent consumption system for the determination of chloride (Cl) in waters. The system is based in the classic reaction of Cl with Fe3+ and Hg(SCN)2, but due to the hazardous properties of this last reagent, the proposed methodology has been developed with the aim to minimize the consumption of this one, consuming less than 0.05 mg of Hg for a Cl determination, being the system of this type with the lowest Hg consumption. The linear working range was between 1 and 40 mg L−1 Cl and the detection limit was 0.2 mg L−1 Cl. The repeatability (RSD) was 0.8% for a 10 mg L−1 Cl solution, and the injection throughput was 130 h−1. The proposed system is compared with other chloride monitoring flow systems, this comparison is realized with a point of view of the equilibrium between the obtained analytical features and produced residues toxicity. The proposed system was applied to the determination of Cl in mineral, tap and well water.  相似文献   

7.
氢化物发生-原子荧光光谱法测定中草药中的微量砷   总被引:8,自引:0,他引:8  
研究了氢化物发生-原子荧光光谱法测定中草药中微量砷的方法的最佳条件,以50g/L硫脲 50g/L抗坏血酸为预还原抗干扰剂,测定了10种中草药药品中的砷,方法检出限(3σ)为0.103μg/L,相对标准偏差为1.6%-3.2%,回收率为89.2%-112%。  相似文献   

8.
A novel method for speciation analysis of inorganic arsenic was developed by on-line hyphenating microchip capillary electrophoresis (chip-CE) with hydride generation atomic fluorescence spectrometry (HG-AFS). Baseline separation of As(III) and As(V) was achieved within 54 s by the chip-CE in a 90 mm long channel at 2500 V using a mixture of 25 mmol l(-1) H3BO3 and 0.4 mmol l(-1) CTAB (pH 8.9) as electrolyte buffer. The precisions (RSD, n=5) ranged from 1.9 to 1.4% for migration time, 2.1 to 2.7% for peak area, and 1.8 to 2.3% for peak height for the two arsenic species at 3.0 mg l(-1) (as As) level. The detection limits (3sigma) for As(III) and As(V) based on peak height measurement were 76 and 112 microg l(-1) (as As), respectively. The recoveries of the spikes (1 mg l(-1) (as As) of As(III) and As(V)) in four locally collected water samples ranged from 93.7 to 106%.  相似文献   

9.
Mingli Chen 《Talanta》2009,78(1):88-1591
The separation and speciation of inorganic arsenic(III) and arsenic(V) are facilitated by employing a novel sequential injection system incorporating two mini-columns followed by detection with hydride generation atomic fluorescence spectrometry. An octadecyl immobilized silica mini-column is used for selective retention of the complex between As(III) and APDC, while the sorption of As(V) is readily accomplished by a 717 anion exchange resin mini-column. The retained As(III)-PDC complex and As(V) are effectively eluted with a 3.0 mol L−1 hydrochloric acid solution as stripping reagent, which well facilitates the ensuing hydride generation process via reaction with tetrahydroborate. With a sampling volume of 1.0 mL and an eluent volume of 100 μL for both species, linear ranges of 0.05-1.5 μg L−1 for As(III) and 0.1-1.5 μg L−1 for As(V) are obtained, along with enrichment factors of 7.0 and 8.2, respectively. Precisions of 2.8% for As(III) and 2.9% for As(V) are derived at the concentration level of 1.0 μg L−1. The practical applicability of the procedure has been demonstrated by analyzing a certified reference material of riverine water (SLRS-4), in addition to spiking recovery in a lake water sample matrix.  相似文献   

10.
Ferrer L  de Armas G  Miró M  Estela JM  Cerdà V 《Talanta》2005,68(2):343-350
An automatic multisyringe flow injection analysis (MSFIA) system coupling a flow-through optical fiber diffuse reflectance sensor with in-line gas-diffusion (GD) separation is proposed for the isolation, preconcentration and determination of traces of volatile and gas-evolving compounds in samples containing suspended solids, with no need for any preliminary batch sample treatment. The flowing methodology overcomes the lost of sensitivity of the in-line separation technique, when performed in a uni-directional continuous-flow mode, through the implementation of disk-based solid-phase extraction schemes. The high selectivity and sensitivity, the low reagent consumption and the miniaturization of the whole assembly are the outstanding features of the automated set-up. The proposed combination of techniques for separation, flow analysis, preconcentration and detection was applied satisfactorily to sulfide determination in environmental complex matrixes. The method based on multicommutation flow analysis involves the stripping of the analyte as hydrogen sulfide from the donor channel of the GD-module into an alkaline receiver segment, whereupon the enriched plug merges with well-defined zones of the chormogenic reagents (viz., N,N-dimethyl-p-phenylenediamine (DMPD) and Fe(III)). The in-line generated methylene blue dye is subsequently delivered downstream to the dedicated optrode cell furnished with a C18 disk, while recording continuously the diffuse reflectance spectrum of the pre-concentrated compound. This procedure provides a linear working range of 20-500 μg l−1 sulfide with a relative standard deviation of 2.2% (n = 10) at the 200 μg l−1 level, and a detection limit of 1.3 μg l−1.  相似文献   

11.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

12.
A novel optical fibre reflectance sensor coupled to a multisyringe flow injection system (MSFIA) for the determination and speciation analysis of iron at trace level using chelating disks (iminodiacetic groups) is proposed. Once iron(III) has been retained onto a chelating disk, an ammonium thiocyanate stream is injected in order to form the iron(III)-thiocyanate complex which is spectrophotometrically detected at 480 nm. Iron(III) is eluted with 2 M hydrochloric acid so that the chelating disk is regenerated for subsequent experiments. The determination of total iron is achieved by the on-line oxidation of iron(II) to iron(III) with a suitable hydrogen peroxide stream.A mass calibration was feasible in the range from 0.001 to 0.25 μg. The detection limit (3sb/S) was 0.001 μg. The repeatability (RSD), calculated from nine replicates using 1 ml injections of a 0.1 mg/l concentration, was 2.2%. The repeatability between five chelating disks was 3.6%. The applicability of the proposed methodology in fresh and seawater samples has been proved.The proposed technique has been validated by replicate analysis (n = 4) of certified reference materials of water with satisfactory results.  相似文献   

13.
《Analytica chimica acta》2002,455(1):149-157
A time-based multisyringe flow injection procedure with spectrofluorimetric detection is proposed in this paper for the determination of aluminium in drinking water. The flow methodology is based on the simultaneous or sequential injection of sample and chelating reagent (viz. 8-hydroxyquinoline-5-sulphonic acid) plugs using a multicommutation approach so that three successive injections may be performed with a sole displacement of the piston driver bar of the burette. Thus, an injection throughput as high as 154 h−1 is achieved by sampling a 182 μl sample zone. In order to enhance the luminescence, the reaction is carried out in micellar medium using hexadecyltrimethylammonium chloride as surfactant. The influence of geometric and hydrodynamic variables as well as several parameters such as multicommutation timing, ligand and surfactant concentration and reagent pH was assessed.Under the selected working conditions, a linear dynamic range from 10 to 500 μg l−1 Al(III), a 3σ detection limit of 0.5 μg l−1 and a coefficient of variation of 0.6% at the 30 μg l−1 level were obtained. The analytical features were compared with those reported in previous flow injection and sequential injection methods. The multisyringe technique was successfully applied to the determination of aluminium in drinking water at low mineralisation levels, validating the results by inductively coupled plasma atomic emission spectrometry.  相似文献   

14.
A systematic investigation of UV photochemical vapor generation (photo-CVG) and its potential application for seven typical hydride-forming elements (As, Sb, Bi, Te, Sn, Pb and Cd) when combined with atomic fluorescence spectrometry (AFS) detection is presented. These analyte ions were converted to volatile species following UV irradiation of their aqueous solution to which low molecular weight organic acids (such as formic, acetic or propionic acid) had been added, and introduced to an atomic fluorescence spectrometer for subsequent analytical measurements. The experimental conditions for photo-CVG and the interferences arising from concomitant elements were carefully investigated. Limits of detection as low as 0.08, 0.1, 0.2 and 0.5 ng mL− 1 were obtained for Te, Bi, Sb and As, respectively, comparable to those by hydride generation-AFS. The RSDs obtained with the proposed method for these elements were better than 5% at 50 ng mL− 1. It is noteworthy that the presence of TiO2 nanoparticles combined with UV irradiation remarkably enhances the CVG efficiencies of Se(VI) and Te(VI), which cannot form hydrides with KBH4/NaBH4. Moreover, photo-CVG has a greater tolerance toward interferences arising from transition elements than hydride generation, and this facilitates its application to the analysis of complicated sample matrices.  相似文献   

15.
运用碱式消解法对样品进行前处理,采用氢化物发生-原子荧光光谱数学计算法测定大气颗粒物中As(Ⅲ)和As(Ⅴ)的含量。探讨了还原剂用量、酸介质及其酸度、载气及屏蔽气流量和观测高度等对荧光强度的影响,分析了共存离子对砷测定的干扰。在选定的最佳条件下,得到检出限为0.34μg/L,加标回收率为87.8%~108.2%。方法可用于测定大气颗粒物中不同形态的砷。  相似文献   

16.
Ferrer L  de Armas G  Miró M  Estela JM  Cerdà V 《Talanta》2004,64(5):1119-1126
In this paper, a fully software-controlled multisyringe flow injection (MSFIA) spectrophotometric system is proposed for the determination of sulfide in environmental and waste waters. The implementation of ancillary solenoid valves into the flow network allows a multitude of injection modalities to be explored, the selected modality being directly dependent on the aim of the assays. The multicommuted sandwich-type approach is introduced in this work as an efficient means to warrant high sensitivity for the particular assay with excellent repeatabilities and a considerable reagent saving. Moreover, a high injection frequency may be easily attained by carrying out a multiple injection modality during a single forward displacement of the piston driver bar. The interfacing of the robust and versatile multisyringe piston pump with an optical fiber plug-in spectrophotometer furnished with a light emitting diode enables the miniaturization of the flow analyzer, which is thus readily adaptable to in-situ and real-time monitoring schemes. The flow method is based on the coupling Fischer’s reaction of sulfide with N,N-dimethyl-p-phenylenediamine in the presence of Fe(III) as oxidizing reagent in a 0.7 M HCl medium. Careful selection of the physical and chemical variables enabled coefficients of variations better than 1.5% (n = 10) at the 1 mg l−1 level for both injection modalities. Dynamic working ranges of 0.2–2.0 and 0.5–5 mg l−1 sulfide for sandwich and multiple injection techniques, and detection limits of 0.09 and 0.15 mg l−1, respectively, were obtained. Furthermore, the sandwich modality featured an average slope of 0.43 ± 0.02 l mg−1 calculated from 10 day-to-day calibration plots. This result reveals better sensitivity than other flowing stream methods described in the literature. The multiple injection technique allowed an improvement of the injection throughput up to 80 h−1, although a decrease of sensitivity was concomitantly observed (average slope of 0.17 ± 0.01 l mg−1).

The multisyringe flow method was successfully applied to the determination of sulfide in different spiked water matrices (namely, mineral, tap, freshwater, seawater and wastewater) with recoveries ranging from 96 to 104%. Good agreement was also found in water samples between the MSFIA results and those of the batch APHA-standard method.  相似文献   


17.
采用离子色谱-双阳极电化学氢化物发生-原子荧光光谱法分析锑形态,实验采用pH 6.50 浓度均为50 mmol/L的(NH2)2HPO4和酒石酸混合溶液为离子色谱流动相,5 min内实现Sb(Ⅴ)、 Sb(Ⅲ)的基线分离,Sb(Ⅴ)、 Sb(Ⅲ)色谱峰面积的相对标准偏差是4.0%、 2.3%,100 μL进样时得到的检出限分别为5.39、 5.42 μg/L(S/N=3),方法可用于实际样品中的锑化合物形态的分析测定.  相似文献   

18.
建立了一种顺序注射氢化物发生-原子荧光光谱法测定试样中Se和As的方法,同时讨论了共存离子的干扰情况.在最佳实验条件下,Se和As的检出限分别为0.16和0.095 μg/L,加标回收率为92.4%~104.7%.  相似文献   

19.
A new method was developed for simultaneous determination of trace arsenic and antimony in Chinese herbal medicines by hydride generation-double channel atomic fluorescence spectrometry with a Soxhlet extraction system and an n-octanol-water extraction system, respectively. The effects of analytical conditions on the fluorescence intensity were investigated and optimized. A water-dissolving and methanol-water-dissolving capability were compared. The contents of different species in five Chinese herbal medicines and their decoctions were analyzed. The concentration ratios of n-octanol-soluble As or Sb to water-soluble As or Sb were related to the kinds of medicine and the acidity of the decoction. Soxhlet extraction was found to be an effective method for plants pretreatment for determination of arsenic and antimony species in Chinese herbs; the interferences of coexisting ions were evaluated. The proposed method has the advantages of simple operation, high sensitivity and high speed, with 3σ detection limits of 0.094 μg g−1 for As(III), 0.056 μg g−1 for total As, 0.063 μg g−1 for Sb(III) and 0.019 μg g−1 for total Sb in a 1.0 g of the sample.  相似文献   

20.
Rui Liu  Maoyang Xi  Yi Lv 《Talanta》2009,78(3):885-635
Arsine trapping on resistively heated tungsten coil was investigated and an analytical method for ultratrace arsenic determination in environmental samples was established. Several chemical modifiers, including Re, Pt, Mo, Ta and Rh, were explored as permanent chemical modifiers for tungsten coil on-line trapping and Rh gave the best performance. Arsine was on-line trapped on Rh-coated tungsten coil at 640 °C, then released at 1930 °C and subsequently delivered to an atomic fluorescence spectrometer (AFS) by a mixture of Ar and H2 for measurement. In the medium of 2% (v/v) HCl and 3% (m/v) KBH4, arsine can be selectively generated from As(III). Total inorganic arsenic was determined after pre-reduction of As(V) to As(III) in 0.5% (m/v) thiourea-0.5% (m/v) ascorbic acid solution. The concentration of As(V) was calculated by difference between the total inorganic arsenic and As(III), and inorganic arsenic speciation was thus achieved. With 8 min on-line trapping, the limit of detection was 10 ng L−1 for As(III) and 9 ng L−1 for total As; and the precision was found to be <5% R.S.D. (n = 7) for 0.2 ng mL−1 As. The proposed method was successfully applied in total arsenic determination of several standard reference materials and inorganic arsenic speciation analysis of nature water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号