首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An HPLC/MS/MS method was developed for the simultaneous determination of the following benzimidazole anthelmintics and metabolites in plasma: flubendazole, albendazole, fenbendazole, mebendazole, thiabendazole, hydrolyzed flubendazole, albendazole sulfoxide, albendazole sulfone, albendazole aminosulfone, oxfendazole, fenbendazole sulfone, aminomebendazole, hydroxymebendazole, and 5-hydroxythiabendazole. The sample preparation process involved a pH-dependent extraction of the analytes. Chromatographic separation was performed on a C18 column with a mobile phase gradient starting with methanol-water (20 + 80, v/v) containing 0.1% formic acid. The overall average recoveries of the analytes based on a matrix-matched calibration ranged from 75.0 to 120.0%, with RSD values of <20.0%. The LODs ranged from 0.08 to 2.0 microg/kg and the LOQs from 0.3 to 5.0 microg/kg. The validated method was used in pharmacokinetic studies of benzimidazole compounds in rabbits, and the elimination of the metabolites was measured quantitatively.  相似文献   

2.
液相色谱串联质谱法同时测定饲料中8种苯并咪唑类药物   总被引:2,自引:0,他引:2  
建立了同时测定饲料中8种苯并咪唑类药物(噻苯咪唑、丙硫咪唑、硫苯咪唑、苯硫氧咪唑、氟苯咪唑、甲苯咪唑、丙氧苯唑和三氯苯唑)的液相色谱串联质谱分析方法。饲料样品用酸化乙腈直接提取,提取液用甲酸溶液稀释后进行分析。分析时用XBridgeTMC18色谱柱,以甲酸溶液-乙腈体系进行梯度洗脱,MRM方式测定,基质外标法定量。8种苯并咪唑类药物均在0.02~10.0 mg.L-1范围内呈良好的线性关系,相关系数(r2)均不低于0.990,在饲料样品中的检出限为2.1~63.0μg.kg-1。饲料中苯并咪唑类药物在0.50、30、200 mg.kg-13种加标水平下的回收率为84%~104%,相对标准偏差均小于10.0%。方法分析单个样品约需30 min,该方法适合饲料中8种苯并咪唑类药物的同时分析。  相似文献   

3.
This study compared four extraction methods for the simultaneous determination of tetracyclines, macrolides, quinolones, sulphonamides and anthelmintics (including benzimidazoles and avermectins) in eggs by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Solvent extraction, solid-phase extraction (SPE), matrix solid-phase dispersion (MSPD) and modified QuEChERS procedure were compared in terms of recovery and number of veterinary drugs extracted. The solvent extraction procedure with a clean-up step provided better results than the other tested procedures. The QuEChERS procedure was simpler and faster, but extracted fewer compounds than solvent extraction. MSPD did not extract tetracyclines and quinolones, whereas macrolides and tetracyclines were not extracted when SPE was applied. The solvent extraction procedure was validated, obtaining recoveries ranging from 60% (sulfaquinoxaline) to 119% (levamisole) with repeatability values (expressed as relative standard deviations, RSDs) lower than 20% at two concentration levels (10 and 100 μg kg−1), except for erythromycin, emamectin and ivermectin that showed RSD values close to 25% at 10 μg kg−1. Limits of quantification (LOQs) were always equal or lower than 5 μg kg−1. Finally the method was applied to egg samples, and erythromycin, enrofloxacin, difloxacin, thiabendazole, emamectin and fenbendazole were detected in four samples.  相似文献   

4.
A method using an on-line solid phase extraction (SPE) and liquid chromatography with electrospray-tandem mass spectrometry (LC-ES-MS/MS) for the determination of flunitrazepam (FM2) and 7-aminoflunitrazepam (7-aminoFM2) in urine was developed. A mixed mode Oasis HLB SPE cartridge column was utilized for on-line extraction. A reversed phase C18 LC column was employed for LC separation and MS/MS was used for detection. Sample extraction, clean-up and elution were performed automatically and controlled by a six-port valve. Recoveries ranging from 94.8 to 101.3% were measured. For both 7-aminoFM2 and FM2, dual linear ranges were determined from 20 to 200 and 200-2000 ng/ml, respectively. The detection limit for each analyte based on a signal-to-noise ratio of 3 ranged from 1 to 3 ng/ml. The intra-day and inter-day precision showed coefficients of variance (CV) ranging from 4.6 to 8.5 and 2.6-9.2%, respectively. The applicability of this newly developed method was examined by analyzing several urine samples.  相似文献   

5.
Msagati TA  Nindi MM 《Talanta》2004,64(1):87-100
A high performance liquid chromatography (HPLC) coupled to a mass spectrometer (MS) was used for a simultaneous determination of 16 sulfonamide compounds spiked in water, urine, milk, and bovine liver and kidney tissues. Supported liquid membrane (SLM) made up of 5% tri-n-octylphosphine oxide (TOPO) dissolved in hexyl amine was used as a sample clean-up and/or enrichment technique. The sulfonamides mixture was made up of 5-sulfaminouracil, sulfaguanidine, sulfamethoxazole, sulfamerazine, sulfamethizole, sulfamethazine (sulfadimidine), sulfacetamide, sulfapyridine, sulfabenzamide, sulfamethoxypyridazine, sulfamonomethoxine, sulfadimethoxine sulfasalazine, sulfaquinoxaline, sulfadiazine, and sulfathiazole. Some of these compounds, such as, sulfaquinoxaline, sulfadiazine, sulfabenzamide, sulfathiazole and sulfapyridine failed to be trapped efficiently by the same liquid membrane (5% TOPO in hexylamine). The detection limits (DL) obtained were 1.8 ppb for sulfaguanidine and sulfamerazine and between 3.3 and 10 ppb in bovine liver and kidney tissues for the other sulfonamides that were successfully enriched with SLM; 2.1 ppb for sulfaguanidine and sulfamerazine and between 7.5 and 15 ppb in cow’s urine, whereas the DL values in milk were 12.4 ppb for sulfaguanidine and sulfamerazine and between 16.8 and 24.3 for the other compounds that were successfully enriched by the membrane. Several factors affecting the extraction efficiency during SLM enrichment, such as donor pH, acceptor pH, enrichment time and the membrane solvent were studied.  相似文献   

6.
Amitriptyline, citalopram, fluoxetine, and fluvoxamine were isolated by electro membrane extraction (EME) from 70 μl of untreated plasma (pH 7.4), through a supported liquid membrane (SLM) of 1-ethyl-2-nitrobenzene immobilized in the pores of a porous polypropylene hollow fiber, and into 30 μl of 10 mM HCOOH as acceptor solution inside the lumen of the hollow fiber. The driving force of the extraction was a 9 V potential sustained over the SLM with a common battery, with the positive electrode placed in the plasma sample and the negative electrode placed in the acceptor solution. Extractions were performed under totally stagnant conditions with a very simple device for 1 min (kinetic regime), and subsequently the acceptor solution was analyzed directly by liquid chromatography–mass spectrometry (LC–MS). Recoveries were 12, 13, 22, and 17% for fluoxetine, amitriptyline, citalopram, and fluvoxamine, respectively. Sample clean-up was comparable to reversed-phase solid-phase extraction (SPE), but EME required substantially less time than SPE. The time advantage of EME was further improved by parallel extraction of three samples (for 1 min) with the same 9 V battery. EME from plasma combined with LC–MS provided limits of quantification (S/N = 10) in the range 0.4–2.3 ng/ml, linearity in the range 1–1000 ng/ml with r2-values of 0.998–0.999, and repeatability in the range 3.2–8.9% RSD in the mid-therapeutic window (100 ng/ml).  相似文献   

7.
The quantification of the HIV integrase inhibitor raltegravir in blood plasma is described using solid phase extraction (SPE) coupled with an accurate high-performance liquid chromatography assay with ultraviolet (UV) detection. The method was validated over the range of 20-10,000 ng/mL using simple sample preparation and chromatography. The SPE method was optimized to be selective and highly efficient. The buffer’s ionic strength and pH were optimized for retaining RAL and the internal standard on the column, the percentage of methanol was optimized in the cleaning step to remove unwanted plasma contaminants, and the type and amount of acid was optimized for complete elution of the compounds. This method has no interference with other potentially co-administered antiretrovirals or common drugs. Average recoveries for the extraction method were consistently high: 90% for raltegravir and 90% for the internal standard diazepam. This method was found to be accurate and precise. Within day (n = 6) and between day (n = 18) accuracies ranged from 97.5 to 104.4%. Within-day (n = 6) and between-day (n = 18) precision ranged from 1.4 to 3.8%, and from 2.4 to 7.9%, respectively. This is the first published method to use simple UV technology and reliable SPE extraction methodology for the quantification of raltegravir in human plasma. This method can be easily implemented in most bioanalytical laboratories.  相似文献   

8.
Determination of small amounts of the fat-soluble species Vitamin A (VA) (2.5 μg/g) and β-carotene (9 μg/g) from emulsified nutritional supplements containing 50 kinds of co-existing compounds and a fat content between 2000 and 8000 times higher was performed by solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with fluorescence detection set at ex. 350 nm and em. 480 nm, and visible detection at 450 nm using an Inertsil ODS 80A (5 μm) analytical column. Mobile phases of methanol-ethanol (50:50) and acetonitrile-ethanol (70:30) were used for the both vitamins. A Bond Elut C18 cartridge was chosen for SPE after comparison with eight other types of SPE cartridge. Retention time of VA and β-carotene was 7 and 8 min, respectively, giving a limit of detection of ca. 0.1 ng per injection at a signal-to-noise ratio 3:1. Recoveries of VA and β-carotene were over 90% by the standard addition method. Relative standard deviation of VA and β-carotene were ca. 2.9 (n=5) and 2.3% (n=5), respectively.  相似文献   

9.
An electro membrane extraction (EME) methodology was utilized to study the isolation of some environmentally important pollutants, such as chlorophenols, from aquatic media based upon the electrokinetic migration process. The analytes were transported by application of an electrical potential difference over a supported liquid membrane (SLM). A driving force of 10 V was applied to extract the analytes through 1-octanol, used as the SLM, into a strongly alkaline solution. The alkaline acceptor solution was subsequently analyzed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. The parameters influencing electromigration, including volumes and pH of the donor and acceptor phases, the organic solvent used as the SLM, and the applied voltage and its duration, were investigated to find the most suitable extraction conditions. Since the developed method showed a rather high degree of selectivity towards pentachlorophenol (PCP), validation of the method was performed using this compound. An enrichment factor of 23 along with acceptable sample clean-up was obtained for PCP. The calibration curve showed linearity in the range of 0.5–1000 ng/mL with a coefficient of estimation corresponding to 0.999. Limits of detection and quantification, based on signal-to-noise ratios of 3 and 10, were 0.1 and 0.4 ng/mL, respectively. The relative standard deviation of the analysis at a PCP concentration of 0.5 ng/mL was found to be 6.8% (n = 6). The method was also applied to the extraction of this contaminant from seawater and an acceptable relative recovery of 74% was achieved at a concentration level of 1.0 ng/mL.  相似文献   

10.
Dispersive liquid-liquid microextraction (DLLME) and liquid chromatography-electrospray-tandem mass spectrometry (LC-ES-MS/MS) procedure was presented for the extraction and determination of 7-aminoflunitrazepam (7-aminoFM2), a biomarker of the hypnotic flunitrazepam (FM2) in urine sample. The method was based on the formation of tiny droplets of an organic extractant in the sample solution using water-immiscible organic solvent [dichloromethane (DCM), an extractant] dissolved in water-miscible organic dispersive solvent [isopropyl alcohol (IPA)]. First, 7-aminoFM2 from basified urine sample was extracted into the dispersed DCM droplets. The extracting organic phase was separated by centrifuging and the sedimented phase was transferred into a 300 μl vial insert and evaporated to dryness. The residue was reconstituted in 30 μl mobile phase (20:80, acetonitrile:water). An aliquot of 20 μl as injected into LC-ES-MS/MS. Various parameters affecting the extraction efficiency (type and volume of extraction and dispersive solvent, effect of alkali and salt) were evaluated. Under optimum conditions, precision, linearity (correlation coefficient, r2 = 0.988 over the concentration range of 0.05-2.5 ng/ml), detection limit (0.025 ng/ml) and enrichment factor (20) had been obtained. To our knowledge, DLLME was applied to urine sample for the first time.  相似文献   

11.
Fuh MR  Wu TY  Lin TY 《Talanta》2006,68(3):987-991
A method using a solid phase extraction (SPE) and ion-pair liquid chromatography-electrospray-tandem mass spectrometry (LC-ES-MS/MS) was developed for determination of amphetamine (Amp) and methamphetamine (mAmp) in urine samples. A reversed phase C18 column was utilized for LC separation and MS/MS was used for detection. Trifluoroacetic acid was added to the mobile phase as an ion-pairing reagent. MS2 was employed for quantitative determination. In addition, d8-amphetamine and d8-methamphetamine were used as internal standards. An Oasis HLB SPE cartridge, which has hydrophilic and lipophilic functions, was utilized for sample pre-treatment. Recoveries ranging from 97.3 to 102.1% were measured. Good linear ranges, 5-500 ng/ml, for Amp and mAmp were determined. The detection limit of each analytical compound, based on a signal-to-noise ratio of 3, was approximately 1 ng/ml. The applicability of this newly developed method was examined by analyzing several urine samples from drug users.  相似文献   

12.
Benzimidazoles are drugs which target tubulin and are widely used to treat intestinal parasites. Four benzimidazoles are tested with the well-characterized and commercially available bacterial p-hydroxybenzoate hydroxylase (PHBH), which belongs to the group of Class A FAD-monooxygenases, which also includes such enzymes as the FAD-monooxygenase domain of MICAL. PHBH is shown to be competitively inhibited by all four benzimidazoles (mebendazole, albendazole, fenbendazole, and oxibendazole) in the micromolar range in the hydroxylase reaction, but not in the non-physiological NADPH-dehydrogenase reaction of ferricyanide reduction. The inhibition pattern is consistent with benzimidazoles competing with p-hydroxybenzoate for the resting state of the enzyme, indirectly indicating the ordered mechanism of substrate binding. Modeling studies support the conclusions derived from steady-state kinetics.  相似文献   

13.
A liquid chromatographic-tandem mass spectrometric multiresidue method for the simultaneous quantitative determination of the tetrahydroimidazole, levamisole and the benzimidazoles thiabendazole, oxfendazole, oxibendazole, albendazole, fenbendazole, febantel and triclabendazole in milk has been developed and validated. The anthelmintic residues were extracted with ethyl acetate. The liquid chromatographic separation was performed on a reversed-phase C18 column with gradient elution. The analytes were detected by tandem quadrupole mass spectrometry after positive electrospray ionisation by multiple reaction monitoring. The confirmatory method is very sensitive and each component can be detected at a residue level lower than 1 microgram/l. The method is validated according to the revised European Union requirements and all parameters were found conform the criteria. The evaluated parameters were linearity, specificity, stability, recovery, precision (repeatability and within-laboratory reproducibility) and analytical limits (detection limit, decision limit and detection capability). This analytical method is applied in the Belgian monitoring programme for classical anthelmintic veterinary drugs in raw farm cow's milk.  相似文献   

14.
An analytical method for the simultaneous determination of trace amounts of fourteen endocrine disrupter chemicals (EDCs) in urban wastewater samples has been developed. The studied compounds were: bisphenol A and its chlorinated derivatives (monochloro, dichloro, trichloro and tretrachlorobisphenol A), three alkylphenols (4-n-nonyl, 4-n-octyl and 4-(tert-octyl)phenol) and six well known phthalate esters (dimethyl, diethyl, di-n-butyl, butylbenzyl, bis(2-ethylhexyl) and di-n-octylphthalate). The method involves extraction from the samples and preconcentration of the analytes using a solid-phase extraction (SPE) procedure and subsequent liquid chromatographic separation with mass spectrometric detection (LC−MS). Bisphenol F was used as a surrogate. Quantification limits found ranged between 12 ng L 1 for diethylphthalate and 69 ng L 1 for 4-(tert-octyl)phenol. The method was satisfactorily used for determination of these chemicals in urban wastewater samples of Granada City (Spain) and validated using a recovery assay with spiked samples.  相似文献   

15.
Molecularly imprinted polymers (MIPs) for benzimidazole compounds have been synthesized by precipitation polymerization using thiabendazole (TBZ) as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate (EDMA) and divinylbenzene (DVB) as cross-linkers and a mixture of acetonitrile and toluene as porogen. The experiments carried out by molecularly imprinted solid phase extraction (MISPE) in cartridges demonstrated the imprint effect in both imprinted polymers. MIP–DVB enabled a much higher breakthrough volume than MIP–EDMA, and thus was selected for further experiments. The ability of this MIP for the selective recognition of other benzimidazole compounds (albendazole, benomyl, carbendazim, fenbendazole, flubendazole and fuberidazole) was evaluated. The obtained results revealed the high selectivity of the imprinted polymer towards all the selected benzimidazole compounds.An off-line analytical methodology based on a MISPE procedure has been developed for the determination of benzimidazole compounds in tap, river and well water samples at concentration levels below the legislated maximum concentration levels (MCLs) with quantitative recoveries. Additionally, an on-line preconcentration procedure based on the use of a molecularly imprinted polymer as selective stationary phase in HPLC is proposed as a fast screening method for the evaluation of the presence of benzimidazole compounds in water samples.  相似文献   

16.
In this study, the simultaneous extraction of estrone (E1), 17β-estradiol (E2), estriol (E3), ethinylestradiol (EE2), and their glucuronated and sulfated metabolites in milk was optimized using solid-phase extraction (SPE). The aim of this research was to analyze estrogens and their conjugated metabolites by liquid chromatography with tandem mass spectrometry (LC–MS/MS) in a single run, without the need to perform enzymatic cleavage and derivatization. Two SPE cartridges in tandem were used, consisting of sorbents based on the hydrophilic–lipophilic balance and amine-functionalized packing materials. To monitor analyte loss at every step of the SPE procedure 14C-labeled E2 was spiked into the milk sample and the radioactivity was monitored at all stages of the SPE. In addition, non-radiolabeled standards of estrogens and metabolites were used to optimize solvent systems for the SPE and LC–MS/MS. The optimized method described in this paper can achieve recoveries ranging from 72% to 117% for the free estrogens (E1, E2, E3, and EE2), and 62% to 112% for seven conjugated metabolites. The three doubly conjugated, highly polar metabolites included in this study gave lower recoveries (≤43%) due to poor retention in SPE. Finally, commercial milk samples were analyzed for the presence of estrogens and their conjugated metabolites. Estrone (concentration range: 23–67 ng/L) was found to be the major free estrogen present in all milk samples. Estradiol was consistently observed in milk, but the concentrations were below the limit of detection (LOD of 10 ng/L), and no estriol and ethinylestradiol were detected. Several conjugated estrogen metabolites were identified, 17β-estradiol-3-glucuronide (71–289 ng/L), estrone-3-sulfate (60–240 ng/L), 17β-estradiol-3,17β-sulfate (<LOD to 30 ng/L), and estrone-3-glucuronide (<LOQ of 25 ng/L). This method proved efficient in the simultaneous analysis of estrogens and their metabolites in milk.  相似文献   

17.
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C8MIM][PF6] with 14% TOPO (w/v); donor phase: 4 mL, pH 4.5 KH2PO4 with 2 M Na2SO4; acceptor phase: 25 μL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1–0.4 μg/L, RSD ≤ 5%) and good linear range (1–2000 ng/mL, R2 ≥ 0.999) were obtained for all the analytes. The presence of humic acid (0–25 mg/L dissolved organic carbon) and bovine serum albumin (0–100 μg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2–103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.  相似文献   

18.
The present study has for the first time demonstrated the isolation of peptides from human plasma by electromembrane extraction (EME). Angiotensin 1, angiotensin 2, and angiotensin 3 migrated from 500 μL of diluted plasma, through a thin layer of 1-octanol and 8% di-(2-ethylhexyl) phosphate immobilized as a supported liquid membrane (SLM) in the pores of a porous hollow fiber, and into a 25 μL aqueous acceptor solution present inside the lumen of the fiber. The driving force for the extraction was a 15 V potential difference applied across the SLM. After only 10 min of EME, the peptides were isolated from diluted plasma (pH 3) with extraction recoveries between 25 and 43%. After optimization, the extraction system was evaluated using spiked plasma samples of angiotensin 2. The evaluation was performed by liquid chromatography electrospray mass spectrometry, showing linearity of angiotensin 2 in the range 2.5–125.0 ng/mL (r2 = 0.989), and repeatability (RSD) between 5.6 and 11.6% (n = 6). The results demonstrate the possibility of isolating angiotensin peptides from plasma in only 10 min, using electromembrane extraction. The experimental findings are therefore promising with regard to future peptide extractions.  相似文献   

19.
A new method for the measurement of N-nitrosamines in part-per-trillion concentrations from water samples without preconcentration steps has been developed. This method is based on online UV irradiation after high-performance liquid chromatographic separation and subsequent luminol chemiluminescence detection without addition of an oxidant. It was confirmed that N-nitrosamines in basic aqueous solution were transformed to peroxynitrite by UV irradiation. The detection limits for this method were 1.5 ng/L, 2.9 ng/L, 3.0 ng/L, and 2.7 ng/L for N-nitrosodimethylamine, N-nitrosomorpholine, N-nitrosomethylethylamine, and N-nitrosopyrrolidine, respectively, at a signal-to-noise ratio of 3. The calibration graphs were linear in the range of 5–1000 ng/L for these N-nitrosamines. This method was used for the determination of N-nitrosamines in tap water, river water, and industrial plant effluent samples. The recoveries of N-nitrosodimethylamine, N-nitrosomorpholine, N-nitrosomethylethylamine, and N-nitrosopyrrolidine present in tap water sample at a concentration of 10 ng/L (mean ± standard deviation, n = 4) were (94.8 ± 2.7)%, (102.0 ± 6.9)%, (99.3 ± 3.9)%, and (102.8 ± 2.5)%, respectively. These results indicate that our proposed method can be applied satisfactorily to the determination of N-nitrosamines in water samples.  相似文献   

20.
A surface plasmon resonance (SPR) biosensor screening assay was developed and validated to detect 11 benzimidazole carbamate (BZT) veterinary drug residues in milk. The polyclonal antibody used was raised in sheep against a methyl 5(6)-[(carboxypentyl)-thio]-2-benzimidazole carbamate protein conjugate. A sample preparation procedure was developed using a modified QuEChERS method. BZT residues were extracted from milk using liquid extraction/partition with a dispersive solid phase extraction clean-up step. The assay was validated in accordance with the performance criteria described in 2002/657/EC. The limit of detection of the assay was calculated from the analysis of 20 known negative milk samples to be 2.7 μg kg−1. The detection capability (CCβ) of the assay was determined to be 5 μg kg−1 for 11 benzimidazole residues and the mean recovery of analytes was in the range 81-116%. A comparison was made between the SPR-biosensor and UPLC-MS/MS analyses of milk samples (n = 26) taken from cows treated different benzimidazole products, demonstrating the SPR-biosensor assay to be fit for purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号