首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The contribution of the vapor phase to molecular diffusion in porous silica glass (Vitrapor#5; mean pore diameter 1 micrometer) partially filled with cyclohexane (nonpolar) or water (polar) was investigated with the aid of field-gradient NMR diffusometry. Due to the vapor phase, the effective diffusion coefficient of cyclohexane increased up to ten times relative to the value in bulk liquid upon reduction of the pore space filling factor. On the other hand, the effective diffusion coefficient of water first decreases and then increases when the liquid content is reduced. A two-phase exchange theory is presented accounting well for all experimental diffusion features. The diffusion behavior in the samples with micrometer pores under investigation here is in contrast to previous findings for the same solvents in a material with nanometer pores (Vycor; mean pore diameter 4 nm) where the fast-exchange limit had to be assumed [Ardelean et al., J. Chem. Phys. 119, 10358 (2003)]. It is concluded that the pore size plays a crucial role for the relevance of molecular exchange limits relative to the experimental diffusion/exchange time.  相似文献   

2.
In the present study, we investigate the relationship between the relaxation rate and the filling factor in partially saturated porous media. The filling fluids are polar (water, acetone) and nonpolar (cyclohexane, hexane). The porous sample is a silica glass (Vitrapor#5) with the nominal mean pore size of d = 1 μm ( ± 0.6 μm). All nuclear magnetic resonance relaxation experiments are performed at 20 °C using a NMR instrument operable at 20 MHz proton resonance frequency. The experimental results are compared with a two-phase exchange model providing us information on the strength of surface relaxation and fluid distribution inside pores. These results will affect the NMR estimations about fluid content of porous media.  相似文献   

3.
Octamethylcyclotetrasiloxane is presented and investigated as probe liquid for NMR cryoporometry or DSC-based thermoporometry. This compound which may imbibe into both hydrophilic and hydrophobic pores is shown to exhibit a melting point depression that is larger than that for other cryoporometric probe materials such as cyclohexane. The transverse relaxation time differs by more than three orders of magnitude between the solid and liquid states, separated by a sharp phase transition. Hence, as demonstrated in controlled pore glasses, octamethylcyclotetrasiloxane can provide pore size distributions for materials with pore sizes up to the micrometer range.  相似文献   

4.
A 1H and 2H NMR relaxation method was used to investigate the influence of drying and pressing on the pore size and pore size distribution in the cellulose fibre wall. The investigation was made in the moisture interval in which cellulose fibres normally shrink, i.e. from a moisture ratio of about 1.5 g water/g fibre to dry fibres. When the moisture content of a fibre sample was decreased by drying or pressing, the pores decreased in size and the pore size distribution became narrower. It was found that there were only small differences at a given moisture content between the pore size distributions of samples prepared by drying and by pressing. The results also indicate that the pore shrinkage in cellulose fibres during pressing or drying is a process in which the cell wall pores of a wet cellulose fibre successively shrink as the moisture content decreases. It was observed that, at low moisture contents, pressing and drying resulted in different 1H NMR spin-lattice relaxation profiles. This is discussed in terms of morphology differences in the fibre matrix. The mobility of the protons in the solid phase influences the liquid 1H NMR spin-lattice relaxation in heterogeneous systems through magnetization transfer. We have also studied the effects of hornification in recycled pulps  相似文献   

5.
The effect of a porous medium on the phase transitions and molecular mobility of cyclohexane at a liquid content corresponding to a monolayer is studied by pulsed NMR. The times of longitudinal T 1 and transverse T 2 magnetic relaxation of protons of cyclohexane introduced into granulated porous glasses of the Vycor type with average pore diameters of 4, 11, and 32 nm are measured in the temperature range of 128–293 K. In spite of a relatively low liquid content, two phase transitions are observed for all porous glass samples at temperatures lower than those inherent in pure cyclohexane. At low temperatures, nonfreezing cyclohexane volumes with characteristic times of T 2 ~ 100–200 μs and relative populations of 5–10% remain preserved due to the presence of a small number of micropores commensurable with molecular sizes. The appearance of an additional component with T 2 ~ 200 μs upon temperature elevation to 148 K attests to thawing out of some cyclohexane volumes, which begins long before the crystal-plastic crystal phase transition. The nonexponential character of the transverse magnetization decay of cyclohexane above the temperature of the plastic crystal-liquid phase transition in the porous glass with a pore diameter of 4 nm suggests the existence of barriers for rapid molecular exchange. The obtained experimental results are indicative of the cluster mechanism of cyclohexane adsorption in the studied porous glasses.  相似文献   

6.
A formalism is presented permitting the evaluation of the relative mean-squared displacement of molecules from the intermolecular contribution to spin-lattice relaxation dispersion of dipolar coupled spins. The only condition for the applicability is the subdiffusive power law character of the time dependence of the mean-squared displacement as it is typical for the chain mode regime in polymer liquids. Using field-cycling NMR relaxometry, an effective diffusion time range from nano- to almost milliseconds can be probed. The intermolecular spin-lattice relaxation contribution can be determined with the aid of isotopic dilution, that is, mixtures of undeuterated and deuterated molecules. Experiments have been performed with melts of polyethyleneoxide and polybutadiene. The mean-squared segment displacements have been evaluated as a function of time over five decades. The data can be described by a power law. The extrapolation to the much longer time scale of ordinary field-gradient NMR diffusometry gives good coincidence with literature data. The total time range thus covers nine decades.  相似文献   

7.
《Liquid crystals》1998,25(4):517-523
We report proton NMR experiments on the liquid crystal material N-(p-methoxybenzylidene) p-n-butylaniline (MBBA) at 100MHz in the temperature range 110-350 K. The phase diagram was investigated by means of second moment and spin-lattice relaxation measurements in order to establish connections between dynamics and phase transitions. The results show that in a slow cooling experiment, two processes contribute to the relaxation, a slow ethyl group motion together with reorientation of the methyl groups. For the glassy nematic state, as well as for the phases observed after reheating a quenched sample, only methyl rotation is observed. The correlation times of these various mechanisms were determined and the results compared with those obtained by previous NMR and dielectric analysis.  相似文献   

8.
Proton spin-lattice relaxation and (1)H NMR spectroscopic data are used for studies of the water adsorption and morphology of several newly synthesized carbon-based chars. Two NMR lines have been observed in accordance with a difference between macropore and micropore water in a system with heterogeneous pore structure. The macropores occupy about the half of the char particle volume. In aqueous suspension fast molecular exchange between water in macropores and bulk water leads to an intense NMR line with a single spin-lattice relaxation time T(1), which exhibits a strong particle size effect. This effect has been used for the estimation of T(1) of water molecules in the vicinity of paramagnetic centers at the surface of chars, as well as for macropore size estimation. The kinetics of water vapor adsorption in chars as seen by (1)H NMR indicates that this process begins in micropores, which serve as primary adsorption centers. Water molecules in micropores exhibit specific properties which are characteristic of liquids in a small, restricted space, and they give rise to the observed accumulation as well as saturation effects. Copyright 2001 Academic Press.  相似文献   

9.
It is known that topological restraints by “chain entanglements” severely affect chain dynamics in polymer melts. In this field-cycling NMR relaxometry and fringe-field NMR diffusometry study, melts of linear polymers in bulk and confined to pores in a solid matrix are compared. The diameter of the pore channels was 10 nm. It is shown that the dynamics of chains in bulk dramatically deviate from those observed under pore constraints. In the latter case, one of the most indicative signatures of the reptation model is verified 28 years after its prediction by de Gennes: The frequency and molecular mass dependencies of the spin-lattice relaxation time obey the power law T!M0 v3/4 on a time scale shorter than the longest Rouse relaxation time τR. The mean squared segment displacement in the pores was also found to be compatible to the reptation law < r2>∝ M−1/2t1/2 predicted for τR < t < τd, where τd is the so-called disengagement time. Contrary to these findings, bulk melts of entangled polymers show frequency and molecular mass dependencies significantly different from what one expects on the basis of the reptation model. The data can however be described with the aid of the renormalized Rouse theory.  相似文献   

10.
《Chemical physics letters》2003,367(1-2):55-61
Deuteron NMR spectroscopy was applied to study ammonium ion mobility below 50 K in fully deuterated ammonium hexachloroplumbate. Tunnelling frequencies from the spectra and correlation times from spin-lattice relaxation were measured. The spectra down to about 41 K show also a motionally narrowed component. The order–disorder phase transition takes place at 38.4 K. Below the phase transition two components are found and attributed to ions in ordered domains and transition regions between them, characterised below 25 K by tunnelling frequencies equal 0.35 and 1 MHz, respectively. A gradual change of the potential experienced by ammonium ions was observed.  相似文献   

11.
Literature [Denayer et al. Microporous Mesoporous Mater. 2007, 103, 1 and Denayer et al. Microporous Mesoporous Mater. 2007, 103, 11] shows that zeolite NaX exchanged with Ca(2+) and Co(2+) ions is able to remove cyclopentadiene (CPD) impurities from a 1-octene feed with high selectivity. In the present work, the adsorption of dicyclopentadiene (DCPD), CPD, 1-octene, and n-octane on zeolite X, exchanged with Ca(2+) and/or Co(2+) ions, has been investigated via (1)H magic-angle spinning (MAS) NMR spectroscopy. The liquid adsorbate was dosed under inert atmosphere in an MAS rotor filled with dry adsorbent, at a pore filling degree of 70%. Next, the evolution in time was recorded of the (1)H MAS NMR spectrum and the (1)H spin-lattice and spin-spin relaxation times of the adsorbed components. For the various adsorbate-adsorbent systems, a plot is made of the signal intensity versus the square root of the contact time. It is found that, over the considered time interval, Fickian diffusion takes place. On the basis of the change in time of the spin-lattice relaxation time, a transport diffusion coefficient ranging between 1 and 2 x 10(-15) m(2) x s(-1) is calculated. Moreover, there appear to be two sorption regimes, with different diffusivities. A comparison is made between the (1)H spin-lattice relaxation behavior of DCPD, 1-octene, and n-octane, indicating that 1-octene and n-octane are located closer to the paramagnetic ions than DCPD. The average distance between the adsorbate molecules and the paramagnetic ions is derived from relaxometric data. By analyzing the chemical shifts of the resonance lines, it is found that the pi-interaction of CPD and 1-octene is stronger than that of DCPD.  相似文献   

12.
Reptational dynamics of bulk polymer chains on a time scale between the Rouse mode relaxation time and the so-called disengagement time is not compatible with the basic thermodynamic law of fluctuations of the number of segments in a given volume. On the other hand, experimental field-cycling NMR relaxometry data of perfluoropolyether melts confined in Vycor, a porous silica glass of nominal pore dimension of 4 nm, closely display the predicted signatures for the molecular weight and frequency dependences of the spin-lattice relaxation time in this particular limit, namely T1 proportional M-1/2nu1/2. It is shown that this contradiction is an apparent one. In this paper a formalism is developed suggesting cooperative chain dynamics under nanoscopic pore confinements. The result is a cooperative reptational displacement phenomenon reducing the root-mean-squared displacement rate correspondingly but showing the same characteristic dependences as the ordinary reptation model. The tube diameter effective for cooperative reptation is estimated on this basis for the sample system under consideration and is found to be of the same order of magnitude as the nominal pore diameter of Vycor.  相似文献   

13.
A spinodal demixing technique was employed for the preparation of linear poly(ethylene oxide) (PEO) confined in nanoscopic strands, which in turn are embedded in a quasi-solid methacrylate matrix impenetrable to PEO. Both the molecular weight of the PEO and the mean diameter of the strands are variable to a certain degree. Chain dynamics of the PEO in the molten state were examined with the aid of field-gradient NMR diffusometry and field-cycling NMR relaxometry. The dominating mechanism for translational displacements in the nanoscopic strands is shown to be reptation. A formalism for the evaluation of NMR diffusometry is presented, which permits the estimation of the mean PEO strand diameter. Samples of different composition revealed diameters in the range 9-58 nm, in reasonable agreement with electron micrographs. The time scale of the diffusion measurements was 10-300 ms. On the much shorter time scale of field-cycling NMR relaxometry, 10(-9)-10(-4)s, a frequency dispersion of the spin-lattice relaxation time characteristic for reptation clearly showed up in all samples. An effective tube diameter of only 0.6 nm was found even when the strand diameter was larger than the radius of gyration of the PEO chain random coils. The finding that the tube diameter effective on the short time scale of field-cycling NMR relaxometry is much smaller than the diameter of the confining structure is termed the "corset effect", and is traced back to the lack of local free-volume fluctuation capacity under nanoscale confinements. The order of magnitude of the 'pore' diameter, at which the cross-over from confined to bulk chain dynamics is expected, is estimated.  相似文献   

14.
Kimtys L  Aksnes DW 《The Analyst》2007,132(2):148-152
The pore size distributions of four controlled pore glasses with mean diameters ranging from ca. 7.9 to 23.9 nm were analysed by measuring the (2)H NMR signals from the liquid fraction of confined benzene-d(6) and cyclohexane-d(12) as a function of temperature, in steps of ca. 0.1-1 K. The liquid and solid components of the adsorbates were distinguished, on the basis of the spin-spin relaxation time T(2), by employing a spin-echo sequence. The experimental intensity curves of the non-frozen liquids are well represented by a sum of two error functions. The observed melting point depressions are well represented by the simplified Gibbs-Thompson equation DeltaT = k(p)/R where R is the pore radius and k(p) is a characteristic property of the adsorbate. The k(p) value mainly affects the position of the pore size distribution curve, i.e., the mean pore radius, while the slope of the intensity curve determines the width of the distribution curve. In practice, the NMR method can only be used to determine pore sizes with reasonable accuracy in the mesoporous range unless liquids undergoing larger melting point depressions than the ones investigated so far can be found.  相似文献   

15.
Frequency‐dependent NMR relaxation studies have been carried out on water (polar) and cyclohexane (nonpolar) molecules confined inside porous ceramics containing variable amounts of iron oxide (III). The porous ceramics were prepared by compression of powders mixed with iron oxide followed by thermal treatment. The pore size distribution was estimated using a technique based on diffusion in internal fields that exposed a narrow distribution of macropore sizes with an average pore dimension independent of iron oxide content. The relaxation dispersion curves were obtained at room temperature using a fast field cycling NMR instrument. They display an increase of the relaxation rate proportional to the iron oxide concentration. This behavior is more prominent at low Larmor frequencies and is independent of the polar character of the confined molecules. The results reported here can be fitted well with a relaxation model considering exchange between molecules in the close vicinity of the paramagnetic centers located in the surface and bulk‐like molecules inside the pores. This model allows the extraction of the transverse diffusional correlation time that can be related to the polar character of the confined molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The conditions of layering of adsorbate molecules in porous systems with characteristic sizes of from 1 to 50–100 nm are discussed. The porous systems contain both very narrow pores, in which interaction potentials of pore walls overlap, and comparatively broad pores without overlapping of surface potentials. Three pore size intervals are distinguished. In the first interval, no adsorbate layering occurs, the second interval is characterized by capillary condensation with critical parameters different from their volume values, and, in the third interval, capillary condensation conditions are almost the same as in the volume adsorbtive phase. Criteria of the characteristic pore sizes of different geometries are formulated; the criteria correspond to small volumes in which first-order phase transitions are absent. The boundary between the first and second pore size regions is observed experimentally as the disappearance/appearance of hysteresis loops in adsorption-desorption isotherms measured under strictly equilibrium conditions as the size of pores decreases/increases. A nonuniform distribution of the surface potential is shown to be responsible for the multiplicity of local regions in porous media with their own vapor-liquid coexisting phases. The spinodal transitions in adsorption-desorption in pores can occur between various local regions. An analysis is performed in terms of the lattice gas model with short-range Lennard-Jones interaction of adsorbate molecules with each other and adsorbent walls.  相似文献   

17.
The kinetics of butane and hexane sorption from vapor phase by porous glasses is studied by the pulsed NMR technique. The sorption process is revealed to proceed in two stages: monomolecular adsorption and capillary condensation. The rate of adsorption is limited by the rate of adsorbate transfer to the adsorbent surface, with the latter rate being described by the classical diffusion flux. It is shown that ultramicropores are filled simultaneously with the formation of a monolayer. The relative content of molecules in such pores is estimated. At the stage of monomolecular adsorption and at the initial stage of capillary condensation, when the adsorption proceeds from the vapor phase of butane-hexane or butane-deuterated hexane mixtures, butane molecules are predominantly sorbed and followed by their partial displacement by hexane molecules. The rate of the capillary condensation of butane from the mixture is 15–18-fold lower than that from the vapor phase of butane alone which is explained by a decrease in the gradient of chemical potential. It is shown that, when adsorption occurs from a nonequilibrium butane-hexane mixture, anomalous kinetic curves are observed because the driving force of adsorption changes in the course of establishing equilibrium in the liquid phase.  相似文献   

18.
The first translational self-diffusion NMR measurements in the isotropic phase of banana-shaped liquid crystals are reported. In this paper, two banana-shaped mesogens, having a similar molecular structure and showing a nematic phase, have been investigated by means of translational self-diffusion NMR, (2)H NMR spin-spin and (1)H NMR spin-lattice relaxation measurements in the isotropic phase. While (1)H diffusion and (2)H relaxation times reveal a peculiar slow dynamic behaviour of banana-shaped mesogens compared with calamitic mesogens, the (1)H relaxation times seem to be affected by fast dynamics only. The origin of these dynamic features is discussed in terms of overall and internal molecular motions, in the frame of recent speculations concerning the formation of molecular clusters or aggregates in the isotropic phase of banana-shaped liquid crystals.  相似文献   

19.
The conversion of gas adsorption isotherms into pore size distributions generally relies upon the assumption of thermodynamically independent pores. Hence, pore-pore cooperative adsorption effects, which might result in a significantly skewed pore size distribution, are neglected. In this work, cooperative adsorption effects in water adsorption on a real, amorphous, mesoporous silica material have been studied using magnetic resonance imaging (MRI) and pulsed-gradient stimulated-echo (PGSE) NMR techniques. Evidence for advanced adsorption can be seen directly using relaxation time weighted MRI. The number and spatial distributions of pixels containing pores of different sizes filled with condensate have been analyzed. The spatial distribution of filled pores has been found to be highly nonrandom. Pixels containing the largest pores present in the material have been observed to fill in conjunction with pixels containing much smaller pores. PGSE NMR has confirmed the spatially extensive nature of the adsorbed ganglia. Thus, long-range (≥40 μm) cooperative adsorption effects, between larger pores associated with smaller pores, occur within mesoporous materials. The NMR findings have also suggested particular types of pore filling mechanisms occur within the porous solid studied.  相似文献   

20.
The copper(II) complex of lincomycin in water solution at pH = 7.15 was characterized by (1)H and (13)C NMR and UV-vis spectroscopy. A 1:1 complex is formed in these conditions. The temperature dependence of spin-lattice relaxation rates was measured, showing that all protons behave in a similar fashion and slow exchange conditions prevail. The spin-lattice relaxation rate enhancements were interpreted by the Solomon-Bloembergen-Morgan theory. Reorientational dynamics of the complex was approximated by evaluating the motional correlation time of free lincomycin in water solution. The observed proton and carbon relaxation rate enhancements allowed us to calculate copper-proton and copper-carbon distances that were used for building a molecular model of the complex. The obtained data provide an interpretation of the relatively high stability constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号