首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of falling leaves is studied by means of numerical simulations. The two-dimensional incompressible Navier–Stokes equations, coupled with the equations governing solid body dynamics, are solved using a Fourier pseudo-spectral method with volume penalization to impose no-slip boundary conditions. Comparison with other numerical methods is made. Simulations performed for different values of the Reynolds number show that its decrease stabilizes the free fall motion.  相似文献   

2.
The experimental and numerical analysis of spheres falling into viscous flows is considered. The physical model is built using a set of silicone and glass spheres falling into oil and water. The rigid‐body trajectory of the sphere and the free surface evolution are obtained from videos. The numerical results are obtained using two different finite element codes. The first code uses a fractional step approach with adaptive meshes and time‐step sizes whereas the second code uses a monolithic fully coupled fixed‐mesh technique. The results exhibit a good comparison between both numerical techniques and with the experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A two-dimensional unsteady analysis of an elastic circular cylindrical shell that enters a thin layer of an ideal incompressible liquid is considered. The cylinder initially touches the liquid free surface at a single point and then penetrates the liquid layer at a constant vertical velocity. The problem is coupled because the liquid flow, the shape of the elastic shell and the geometry of the contact region between the body and the liquid must be determined simultaneously. The flow region is subdivided into four complementary regions that exhibit different properties: the region beneath the entering body surface, the jet root, the spray jet, and the outer region. A complete solution is obtained by matching the solutions within these four subdomains. The structural analysis is based on the normal-mode method. Strain-time histories of the inner surface of the cylinder are of particular interest. In the case of a very flexible shell three distinct regimes of the impact process were found. For a high impact velocity the lower part of the shell flattens and the shell does not enter the water. For a moderate impact velocity the shell reaches the bottom and an effect of “fluid capture” may occur. For a low impact velocity the shell penetrates the liquid, but the size of the contact region decreases before the shell reaches the bottom. This behaviour corresponds to exit or “reflection” of the shell from the water layer.  相似文献   

4.
We present direct numerical simulations of the interaction between a vortex ring and a stationary sphere for Re = 2,000. We analyze the vortex dynamics of the ring as it approaches the sphere surface, and the boundary layer formed on the surface of the sphere undergoes separation to form a secondary vortex ring. This secondary vortex ring can develop azimuthal instabilities, which grow rapidly as it interacts with the primary ring. The azimuthal instabilities on both rings are characterized by analysis of the azimuthal component decomposition of the axial vorticity.  相似文献   

5.
A three‐dimensional numerical model is developed to analyze free surface flows and water impact problems. The flow of an incompressible viscous fluid is solved using the unsteady Navier–Stokes equations. Pseudo‐time derivatives are introduced into the equations to improve computational efficiency. The interface between the two phases is tracked using a volume‐of‐fluid interface tracking algorithm developed in a generalized curvilinear coordinate system. The accuracy of the volume‐of‐fluid method is first evaluated by the multiple numerical benchmark tests, including two‐dimensional and three‐dimensional deformation cases on curvilinear grids. The performance and capability of the numerical model for water impact problems are demonstrated by simulations of water entries of the free‐falling hemisphere and cone, based on comparisons of water impact loadings, velocities, and penetrations of the body with experimental data. For further validation, computations of the dam‐break flows are presented, based on an analysis of the wave front propagation, water level, and the dynamic pressure impact of the waves on the downstream walls, on a specific container, and on a tall structure. Extensive comparisons between the obtained solutions, the experimental data, and the results of other numerical simulations in the literature are presented and show a good agreement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
本文基于Cosserat近场动力学发展了一种纤维混凝土的近场动力学模型,对纤维混凝土的破坏现象进行研究。该模型考察了物质点独立的转动自由度和物质点间的力偶作用,而且有表征微结构尺寸的内禀长度,相比于传统的近场动力学模型,更适合描述纤维混凝土这类胶结颗粒材料的力学行为。本文采用完全离散的方式对纤维进行建模,引入了纤维拔出实验中拔出位移和切应力的关系,并且采用组构张量描述纤维的局部分布。数值算例部分模拟了单纤维拔出实验、带预制裂纹的平板拉伸实验和三点弯曲梁实验。数值结果和已有的数值模型以及实验进行了对比,验证了所提出模型的正确性。此外,本文还调查了微结构对纤维混凝土破坏的影响,数值结果显示Cosserat剪切模量和内禀长度会影响裂纹的局部分布,但是不会改变裂纹的主方向。  相似文献   

7.
回转体高速入水过程涉及液体和固体的耦合作用,是一个复杂的非线性、非定常过程。为研究回转体高速入水的结构动响应及流场演变规律,本文中基于STAR-CCM+和ABAQUS平台,建立了回转体高速入水的双向流固耦合数值模型,开展了不同入水速度的回转体高速倾斜入水流固耦合数值计算。结果表明:数值计算的入水速度、位移曲线和空泡形态与实验结果良好吻合,验证了流固耦合方法的有效性;回转体倾斜高速入水的载荷先集中在触水部分边缘处,后集中于回转体底部中心处;流固耦合方法的入水冲击载荷峰值小于刚体的,弹性回转体的载荷曲线产生明显波动;撞水阶段,回转体空泡呈现不对称形态,随着入水加深,空泡不对称性变弱;入水速度60 m/s下,空泡发生表面闭合,回转体入水初速度越快,空泡表面闭合越晚;冲击载荷与入水速度有关,入水速度越大,峰值出现越早,震荡越明显,速度超过100 m/s时,回转体产生塑性形变。  相似文献   

8.
A method is proposed to study the influence of discrete ribs on the dispersion curves for harmonic waves propagating along the directrix of a simply supported cylindrical shell reinforced with rings. A numerical example is considered to demonstrate the necessity of accounting for this factor, the possibility of using a simplified formulation of the problem, and the necessity of accounting for the asymmetry of rib arrangement about the median surface of the shell  相似文献   

9.
This paper is focused on nonlinear dynamics of a shell-shaped workpiece during high speed milling. The shell-shaped workpiece is modeled as a double-curved cantilevered shell subjected to a cutting force with time delay effects. Equations of motion are derived by using the Hamilton principle based on the classical shell theory and von Karman strain-displacement relation. The resulting nonlinear partial differential equations are reduced to a two-degree-of-freedom nonlinear system by applying the Galerkin approach. The averaging method is used to obtain four-dimensional averaged equations for the case of foundational parametric resonance and 1:2 internal resonance. Using a numerical method, the dynamics of the cantilevered shell-shaped workpiece is studied under time-delay effects, parametric excitation, and forcing excitation. It is found that time-delay parameters have great impact on chaotic motion. With increasing amplitude of forcing and parametric excitations, the shell-shaped workpiece exhibits different dynamic behavior.  相似文献   

10.
Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the non-linear response of the shells are described. A high-fidelity non-linear analysis procedure has been used to predict the non-linear response of the shells. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate the complex non-linear response of a compression-loaded shell with an unreinforced cutout. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex non-linear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, results are presented that show how certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.  相似文献   

11.
圆柱壳撞水时的弹塑性动力屈曲研究   总被引:3,自引:0,他引:3  
本文研究圆柱壳在流固中冲击载荷下的弹塑性动力曲问题。建立了液体-气体-固体三相的数学模型。其中结构部分控制方程由弹塑性力学中关于加速度的最小原理获得,本构关系采用增量理论,液体假设为不可压缩,空气层认为最等熵压缩。分别讨论了不同冲击高度时压力变化规律,屈曲对载荷的影响。屈曲沿壳长的分布及发展规律等。  相似文献   

12.
采用多普勒光纤探针测速技术(Doppler pins system,DPS,又称全光纤位移干涉测速技术)和高速摄影技术,研究装配垫片对金属柱壳膨胀断裂的影响,获得了有无垫片对应柱壳外表面位置的速度曲线和垫片对柱壳膨胀断裂影响明显的高速摄影图像。实验结果表明:与无垫片区域相比,垫片区域的柱壳外表面经历了先凸起后内凹的过程,导致垫片对应柱壳的径向运动位移发生反复错位,最终低于无垫片区域约0.34 mm,该位移差可能导致柱壳发生径向剪切断裂;实验结果还表明,在垫片与间隙交界处两侧(沿垫片方向约7.5°、沿间隙方向约9°)处各增加了一条裂纹,该断裂模式既不同于环向拉伸断裂,也不同于45°的剪切断裂,而是由垫片/间隙边界产生的两束稀疏应力波传到柱壳外表面引起的扰动影响所致,这个新的断裂模式与柱壳材料的动态力学性能密切相关。数值模拟结果表明,装配垫片对柱壳断裂机制影响不仅包含该处附加的质量效应,还应考虑炸药通过垫片后作用在柱壳上的冲击加载幅值变化、冲击加载时序与其他部位不同步的差异,以及垫片/间隙交界处引起的表面波传播对柱壳断裂模式的后续发展行为的影响。  相似文献   

13.
A numerical method based on the finite element method is presented for simulating the two-dimensional transient motion of a viscous liquid with free surfaces. For ease of numerical treatment of the free surface expressed by a multiple-valued function, the marker particle method is employed. Numerous virtual particles are spread over all regions occupied by liquid. They move about on a fixed finite element mesh with the liquid velocity at their positions. These particles contribute nothing to the dynamics of the liquid and only serve as markers of liquid regions. The velocity field within liquid regions is calculated by solving the Navier– Stokes equations and the equation of continuity by the finite element method based on quadrilateral elements. A detailed discussion is given of the methodological problems arising in the implementation of the marker particle method on an unstructured finite element mesh and of the solutions to these problems. The proposed method is demonstrated on three sample problems: the broken dam problem, the impact of a falling liquid drop on a still liquid and the entry of a rigid block into water. Good agreement has been obtained in the comparison of the present numerical results with available experimental data.  相似文献   

14.
弹塑性球形薄壳在冲击载荷作用下的动力分析   总被引:10,自引:0,他引:10  
通过曲面弯曲的等度量变换,给出了受冲击球壳的变形模态;接着,分别假定材料力弹性或刚塑性,基地能量守恒,得到了壳本和撞击体在运动过程中控制方程;最后,对所得到的控制方程进行了数值求工与实验数据作了比较,发展二者具有较好的一致性。  相似文献   

15.
Ruhela  Gaurang  DasGupta  Anirvan 《Nonlinear dynamics》2021,106(3):1711-1737
Nonlinear Dynamics - We study the 2D dynamics of a rigid dimer, a dumbbell-shaped extended body, on an elastic surface carrying a harmonic traveling wave. The impact of the dimer with the surface...  相似文献   

16.
提出了一种区域分解法来分析不同边界条件下环肋骨圆柱壳-圆锥壳组合结构的振动特性.首先把组合壳体分解为自由的圆柱壳、圆锥壳段;视环肋骨为离散元件,根据肋骨与圆柱壳段之间的变形协调条件,将肋骨的动能和应变能附加于圆柱壳段能量泛函中.然后基于分区广义变分和最小二乘加权残值法将所有分区界面的位移协调方程引入到组合壳体的能量泛函中.圆柱壳段、圆锥壳段位移变量的周向和轴向分量分别采用Fourier级数和Chebyshev多项式展开.以自由-自由、自由-固支和固支-固支边界条件的环肋骨组合壳体为例,采用区域分解法分析了其自由振动及在不同激励下的振动响应.通过与有限元软件ANSYS结果进行对比,发现两种方法计算结果非常吻合,验证了区域分解方法的计算精度和高效性.  相似文献   

17.
In this paper, a numerical methodology for modeling contact line motion in a dual-grid level-set method (DGLSM) – solved on a uniform grid for interface which is twice that for the flow equations – is presented. A quasi-dynamic contact angle model – based on experimental inputs – is implemented to model the dynamic wetting of a droplet, impacting on a hydrophobic or a superhydrophobic surface. High-speed visualization experiments are also presented for the impact of a water droplet on hydrophobic surfaces, with non-bouncing at smaller and bouncing at larger impact velocity. The experimental results for temporal variation of the droplet shapes, wetted-diameter and maximum height of the droplet match very well with the DGLSM based numerical results. The validation of the numerical results is also presented with already published experimental results, for the non-bouncing on a hydrophobic and bouncing on a superhydrophobic surface, at a constant impact velocity. Finally, a qualitative as well as quantitative performance of the DGLSM as compared to the traditional level set method (LSM) is presented by considering our experimental results. The accuracy of the partially refined DGLSM is close to that of the fine-grid based LSM, at a computation cost which is close to that of the coarse-grid based LSM. The DGLSM is demonstrated as an improved LSM for the computational multi-fluid dynamics (CMFD) simulations involving contact line motion.  相似文献   

18.
This paper considers the dynamic stability of a harmonically base-excited cylindrical shell carrying a top mass. Based on Donnell’s nonlinear shell theory, a semi-analytical model is derived which exactly satisfies the (in-plane) boundary conditions. This model is numerically validated through a comparison with static and modal analysis results obtained using finite element modelling. The steady-state nonlinear dynamics of the base-excited cylindrical shell with top mass are examined using both numerical continuation of periodic solutions and standard numerical time integration. In these dynamic analyses the cylindrical shell is preloaded by the weight of the top mass. This preloading results in a single unbuckled stable static equilibrium state. A critical value for the amplitude of the harmonic base-excitation is determined. Above this critical value, the shell may exhibit a non-stationary beating type of response with severe out-of-plane deformations. However, depending on the considered imperfection and circumferential wave number, also other types of post-critical behaviour are observed. Similar as for the static buckling case, the critical value highly depends on the initial imperfections present in the shell.  相似文献   

19.
在冲击荷载作用下复合材料会产生断裂和分层等损伤。基于损伤数据对冲击工况进行识别,对改善复合材料的设计和确保其安全使用具有重要意义。基于此,本文提出一种基于深度学习和近场动力学(PD)理论的层合板冲击工况识别方法。首先使用改进的表面修正系数PD理论建立复合材料层合板刚体冲击损伤演化分析PD模型,PD模型数值模拟结果结合噪声数据增强技术构建层合板的冲击工况数据库;基于深度学习-卷积神经网络(CNN),对不同工况下的冲击损伤演化数据进行训练,实现对未知冲击工况的识别。结果显示,对于钢球冲击速度和角度的识别准确率均高于90%。  相似文献   

20.
The plane unsteady problem of impact of a thin elastic cylindrical shell on the surface of an ideal incompressible liquid is considered. The initial stage of interaction between the body and the liquid when the stresses in the shell attain peak values is studied. The problem is treated in a linearized formulation and is solved numerically by the normal modes method within the framework of the Wagner approach. The numerical results agree with experimental data for various types of circular cylindrical shells made from mild steel. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 6, pp. 186–197, November–December, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号