首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic nanoparticles (MNPs) are widely used in the areas of biology and biomedicine. The interaction between MNPs and proteins plays a crucial role in the bioapplication of MNPs, and the binding affinity of protein–MNPs is the manifestation of this interaction. The binding affinity of some proteins with MNPs modified in various ways is determined by fluorescence quenching. The results show that the binding affinity depends on the properties of both the MNPs and the proteins. The higher the surface curvature of MNPs, the larger the MNP, and the higher the binding affinity. No significant difference is found in binding affinity between MNPs with different modification methods. For proteins, the binding affinity depends on the properties of individual proteins, such as the amino acid sequence, the native protein conformation in solution, the isoelectric point, and surface potential. In general, the binding affinity is higher for proteins with cysteine residues on the surface. In addition, pH affects the binding affinity between proteins and MNPs; positively charged proteins and lower pH are more suitable for MNP binding due to electrostatic forces.  相似文献   

2.
To study the physicochemical properties of micro-nanoparticles (MNPs) in thermoultrasonic treated fishbone soup, it was subjected to ultra-filtration with a 100 kDa ultrafiltration membrane to obtain large MNPs (LMNPs) and small MNPs (SMNPs). LMNPs and SMNPs were treated with force-breakers, and the interactions of the MNPs with five characteristic volatile compounds were investigated. LMNPs covered most proteins (222.66 mg/mL) and fatty acids (363.76 mg/g), while SMNPs was mostly soluble small molecules with taste substances like total free amino acids (85.26 mg/g), organic acids (2.55 mg/mL), and 5′-nucleotides (169.17 mg/100 mL). The stability of LMNPs is significantly higher than raw bone soup, and SMNPs can exist stably in the solution. Correlation analysis between flavor substance content and flavor suggested that the overall flavor profile of halibut bone soup was closely related to the content changes of 72 significant influence variables. The binding of LMNPs to characteristic flavor compounds was largely affected by hydrophobic interactions, hydrogen bonds, and ionic effects. While the binding of SMNPs to characteristic flavor compounds was largely determined by hydrophobic interaction and hydrogen bonding. This study explores the characteristics of MNPs and provides the possibility to clarify the interaction mechanism between MNPs and flavor.  相似文献   

3.
We investigated the interactions between dendrimer-coated magnetite nanoparticles (MNPs) and the protein serum albumin. The investigation was based on the fluorescence quenching of tryptophan residue of serum albumin after binding with the dendrimer-coated magnetite nanoparticles. The extent of the interactions between bovine serum albumin and dendrimer-coated MNPs strongly depends on their surface groups and pH value.  相似文献   

4.
In vitro selection methodologies to probe RNA function and structure   总被引:2,自引:0,他引:2  
Summary In vitro selection, or SELEX, has been used both to characterize the interaction of natural nucleic acids with proteins and to generate novel nucleic acid-binding species, or aptamers. Although numerous reports have demonstrated the power of the technique, they have not expanded on the methodologies that can be used for selection. This review focuses on the considerations and problems involved in selecting protein-binding aptamers from a random-sequence RNA pool. As an illustration, we describe two approaches to selecting aptamers to a particular target, the HTLV-I Rex protein. In the first, complete randomization is used to find an artificial, high-affinity RNA binding site. In the second, the contributions of individual nucleotides and/or base pairs to the natural Rex-binding element are determined by mutating the wild-type sequence and selecting active binding variants.  相似文献   

5.
It has been hypothesized that selections for aptamers with high affinity for a given target molecule will of necessity identify aptamers that have high specificity for that target. We have attempted to assess this hypothesis by selecting aptamers that can bind to MS2 coat protein or to single- or double-substitution variants of the coat protein. Some aptamers selected to bind MS2 coat protein or its variants were mildly specific for their cognate targets, discriminating by two- to fourfold against closely related proteins. Specificity determinants on both the coat proteins and the aptamers could be identified. However, many aptamers could readily bind to each of the different coat proteins. The identification of such aptamer 'generalists belies the proposed relationship between the affinities and specificities of selected RNA ligands. These results imply that, while aptamers may not finely discriminate between closely related targets, neither will their binding be negated by mutations in targets. Aptamer pharmaceuticals may therefore better resist the evolution of resistance.  相似文献   

6.
A challenge for future applications in nanotechnology is the functional integration of nano-sized materials into cellular structures. Here we investigated superparamagnetic Fe3O4 iron oxide nanoparticles coated with a lipid bilayer for uptake into cells and for targeting subcellular compartments. It was found that magnetic nanoparticles (MNPs) are effectively taken up into cells and make cells acquire magnetic activity. Biotin-conjugated MNPs were further functionalized by binding of the fluorescent tag streptavidin–fluorescein isothiocyanate (FITC) and, following uptake into cells, shown to confer magnetic activity and fluorescence labeling. Such FITC-MNPs were localized in the lysosomal compartment of cells which suggests a receptor-mediated uptake mechanism.  相似文献   

7.
Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.  相似文献   

8.
Aqueous immune magnetite nanoparticles for immunoassay   总被引:1,自引:0,他引:1  
Immune magnetite nanoparticles (MNPs) are prepared by four successive reactions, which are MNPs preparation, silica-coating, surface modification with amino group, and conjugation with bio-molecule, respectively. The crystal structure and morphology of intermediate products are characterized by XRD, TEM and AFM. Qualitative and quantitative assays for amino group on the MNPs’ surface are made by FTIR and Organic Element Assay. Ultraviolet–visible absorption spectrum can indirectly illustrate the quantity of bio-molecule conjugated with MNPs. In addition, specific combination and nonspecific combination of immune MNPs are measured by commercial RIA box. The results show that the size of MNPs prepared is 10 ± 5 nm, and silica-coated MNPs with spinel structure have quasi-spherical morphology. Infrared absorption bands of –NH2 are appeared around 3380–3200 cm−1 and 1650–1510 cm−1, and the amino group content is 0.5 μmol –NH2 per mg MNPs. The specific immune combination of immune MNPs is up to 75%, and nonspecific combination is under 5%.  相似文献   

9.
In the race towards miniaturization in nanoelectronics, magnetic nanoparticles (MNPs) have emerged as potential candidates for their integration in ultrahigh‐density recording media. Molecular‐based materials open the possibility to design new tailor‐made MNPs with variable composition and sizes, which benefit from the intrinsic properties of these materials. Before their implementation in real devices is reached, a precise organization on surfaces and a reliable characterization and manipulation of their individual magnetic behavior are required. In this paper, it is demonstrated how molecular‐based MNPs are accurately organized on surfaces and how the magnetic properties of the individual MNPs are detected and tuned by means of low‐temperature magnetic force microscopy (LT‐MFM) with variable magnetic field. The magnetization reversal on isolated and organized MNPs is investigated; in addition, the temperature dependence of their magnetic response is evaluated.  相似文献   

10.
We describe the surface modification of magnetic nanoparticles (MNPs), the coverage of poly(N-isopropylacrylamide) (PNiPAM) microgel with the MNPs and the inductive heating of these carriers. PNiPAM surface itself was modified using the layer-by-layer (LbL) assembly of polyelectrolytes to facilitate the deposition of surface-modified MNPs. One advantage of this concept is it allows the tuning of the magnetic and thermoresponsive properties of individual components (nanoparticles and microgels) separately before assembling them. Characterisations of the hybrid core–shell are discussed. In particular, it is shown that (i) each layer is successfully deposited and, more importantly, (ii) the coated microgel retains its thermoresponsive and magnetic behaviour.  相似文献   

11.
Magnetic resonance (MR) imaging is capable of demonstrating human anatomy and pathological conditions. Iron oxide magnetic nanoparticles (MNPs) have been used in MR imaging as liver-specific contrast medium, cellular and molecular imaging probes. Because few studies focused on the MNPs other than iron oxides, we developed FeNi alloy MNPs coated with polyethylenimine (PEI). In this study, we demonstrated PEI-coated FeNi MNPs are able to label the cells, which could be detected in MR imaging. For labelling purpose, MNPs were incubated with mouse macrophage cell line (Raw 264.7) for 24 h and these PEI-labelled FeNi alloy MNPs can be uptaken by macrophages efficiently compared with Ferucarbotran, a commercialized superparamagnetic iron oxide (SPIO) under flow cytometry measurement. Besides, these cells labelled with MNPs could be imaged in MR with the identical potency as Ferucarbotran. Further investigation of the cells using Prussian blue staining revealed that FeNi alloy MNPs inside the cells is not oxidized. This phenomenon alleviated the consideration of potential risk of nickel toxicity. We conclude that PEI-coated FeNi MNPs could be candidate for MR contrast medium.  相似文献   

12.
The use of magnetic nanoparticles (MNPs) for the manipulation of biological objects, including proteins, genes, cellular organelles, bacteria, cells, and organs, are reviewed. MNPs are popular candidates for controlling and probing biological objects with a magnetic force. In the past decade, progress in the synthesis and surface engineering of MNPs has further enhanced this popularity.  相似文献   

13.
Here we present a novel approach using surface‐enhanced Raman scattering (SERS) spectroscopy for the sequence‐specific detection of DNA utilizing magnetic nanoparticles (MNPs) for the enrichment of the target molecules. To achieve fast and efficient binding of longer DNA strands, e.g. PCR products, the hybridization procedure is performed in solution. To further purify and enrich the DNA strands of interest, MNPs are used for their separation. Following the binding of the target DNA, a dye‐modified, short synthetic ssDNA is hybridized, which serves as label for the SERS detection. The SERS spectra are used to identify the bound molecules. The applicability of this approach was first tested with short synthetic oligonucleotides to evaluate its specificity. Afterward, the system was applied to detect PCR products amplified from DNA of specific agents of epizootic diseases. Sequences of the bacterium Mycoplasma mycoides subspecies mycoides small colony type (MmmSC), causing contagious bovine pleuropneumonia (CBPP) were used as PCR targets. To demonstrate the multiplexing capability of SERS, the simultaneous detection of three different PCR products labeled with three dyes was performed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Magnetite nanoparticles (MNPs) were prepared using the ferric acetylacetonate as the sole iron source in a facile hydrothermal route, while poly(acrylic acid) (PAA) was chosen as the stabilizer via one-step functionalized MNPs for better hydrophilic properties. The orthogonal was used in the paper for the experimental parameters optimization, including the solvent, the reaction time, the amount of stabilizer and the presynthesis. The obtained highly water dispersible MNPs with uniform size from about 50 to about 100 nm was individually composed of many monodisperse magnetite crystallites approximately 6 nm in size. And the MNPs show high magnetic properties, whose magnetite content was up to 76.76% and the saturation magnetization was 39.0 emu/g. Later the formation mechanism of MNPs was also discussed. Thus the MNPs proved to be very promising for biomedical applications.  相似文献   

15.
The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles(MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug delivery, besides, in magnetic recording, catalysis, and others. MNPs, due to high magnetization response, can be manipulated by the external magnetic fields to penetrate directly into the tumor, thus they can act as ideal drug carriers. MNPs also play a crucial role in drug delivery system because of their high surface-to-volume ratio and porosity. The drug delivery in tumor therapy is related to the sizes, shapes, and surface coatings of MNPs as carriers. Therefore, in this review, we first summarize the effects of the sizes, shapes, and surface coatings of MNPs on drug delivery, then discuss three types of drug release systems, i.e., p H-controlled, temperature-controlled, and magnetic-controlled drug release systems, and finally compare the principle of passive drug release with that of active drug release in tumor therapy.  相似文献   

16.
Quantum coherence can be enhanced by placing metal nanoparticles (MNPs) in optical microcavities. Combining localized-surface plasmon resonances (LSPRs), nonlinear interaction between the LSPR and microcavity arrays of a MNP-microcavity complex offer a unique playground to observe novel optical phenomena and develop novel concepts for quantum manipulation. Here we theoretically demonstrate that optical solitons are achievable with a one-dimensional array which consists of a chain of periodically spaced identical MNP-microcavity complex systems. These differ from the solitons which stem from the MNPs with nonlinear Kerr-like response; the optical soliton here originates from LSPR-microcavity interaction. Using experimentally achievable parameters, we identify the conditions under which the nonlinearity induced by LSPR-microcavity interaction allows us to compensate for the dispersion caused by photon hopping of adjacent microcavities. More interestingly, the dynamics of solitons can be modulated by varying the radius of the MNP. The presented results illustrate the potential to utilize the MNP-microcavity complex for light manipulation, as well as to guide the design of photon switch and on-chip photon architecture.  相似文献   

17.
艾滋病病毒的发现距今已有二十多年的历史了.它仍然以很快的速度在全球范围速蔓延.研发抗艾滋病药物是当代药学的重大课题之一.在以往研究的基础上,我们利用分子叠合和分子对接这两种分子模拟手段,把从PDB数据库中得到的与HIV蛋白酶结合的12个肽类分子和已经上市的抗艾滋病的药物Saquinavir做比较.根据结构相同或相近的分子具有相同的活性原理,运用分子叠合初部判断分子活性,特别是药效团的特征比对揭示了分子活性的原因,为进一步的药物设计奠定了良好的基础.进而采用分子对接的分子模拟方法对这12个肽类分子的活性构象进行了深入的分析,预测出了这12个分子对HIV病毒蛋白酶的不同抑制作用.研究发现:P01、P05、P09、P12可能与已知药物Saquinavir在与HIV蛋白酶结合时具有相似的活性,其中P9的活性最强,有望成为抗HIV药物的理想前体,为下一步的HIV药物的设计研究提供了理论依据.  相似文献   

18.
The creation of multifunctional nanomaterials by combining organic and inorganic components is a growing trend in nanoscience. The unique size-dependent properties of magnetic nanoparticles (MNPs) make them amenable to numerous applications such as carriers of expensive biological catalysts, in magnetically assisted chemical separation of heavy metals and radionuclides from contaminated water sources. The separation of minor actinides from high-level radionuclide waste requires a sorbent stable in acidic pH, with ease of surface functionalization, and a high capacity for binding the molecules of interest. For the described experiments, the MNPs with 50 nm average size were used (size distribution from 20 to 100 nm and an iron content of 80–90 w/w%). The MNPs that have been double coated with an initial silica coating for protection against iron solubilization and oxidation in nitric acid solution (pH 1) and a second silica/polymer composite coating incorporating partially imbedded poly(allylamine) (PA). The final product is magnetic, highly swelling, containing >95% water, with >0.5 mmol amines g?1 available for functionalization. The amine groups of the magnetic resin were functionalized with the chelating molecules diethylenetriaminepentaacetic acid (DTPA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) for separation of minor actinides from used nuclear fuel.  相似文献   

19.
Magnetic nanoparticles (MNPs) of close to invar (Fe0.635Ni0.365) composition were prepared by the electrical explosion of wire using different conditions to insure different values of overheating rates. X-ray diffraction, transmission electron microscopy, low temperature nitrogen adsorption, magnetic and microwave measurements were used for the characterization of MNPs. Increase of the energy injected into the wire led to increase of the specific surface (Ssp) of the produced MNPs from 4.6 to 13.5 m2/g. The fabricated MNPs were spherical and weakly aggregated with the average weighted diameter in the range of 54–160 nm depending on the Ssp. The phase composition of FeNi MNPs consists of two solid solutions of Ni in α-phase and γ-phase lattices. The increase of the energy injected into the wire leads to increase of the α-phase from 5 to 10 wt% as the injected energy raised from 0.8 to 2.5 times the sublimation energies of the wire material. Comparative analysis of structure magnetic and microwave properties showed that the obtained MNPs are important magnetic materials with high saturation magnetization and significant zero field microwave absorption which can be expected to lead to important technological applications.  相似文献   

20.
储鑫  余靓  侯仰龙 《中国物理 B》2015,24(1):14704-014704
Progress in surface modification of magnetic nanoparticles(MNPs)is summarized with regard to organic molecules,macromolecules and inorganic materials.Many researchers are now devoted to synthesizing new types of multi-functional MNPs,which show great application potential in both diagnosis and treatment of disease.By employing an ever-greater variety of surface modification techniques,MNPs can satisfy more and more of the demands of medical practice in areas like magnetic resonance imaging(MRI),fluorescent marking,cell targeting,and drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号