首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The quantum chemical study of the mechanism was performed for tricarbonyl η6-complexes of coronene I-M and kekulene II-M (M = Cr, Mo, W) by the density functional method. The activation barriers of η66-interring haptotropic rearrangements (IHR), being the migration of the metaltricarbonyl group M(CO)3 from one six-membered aromatic ring to another, were determined. The processes of η66-IHR in the metal tricarbonyl complexes with relatively high polycyclic aromatic hydrocarbons (PAH) I and II occur with close energy barriers (ΔG ≈ 20—25 kcal mol–1), which are lower than the barriers (ΔG ~ 30 kcal mol–1) of similar transformations measured or calculated earlier for the chromium tricarbonyl complexes of naphthalene and its derivatives and other PAH. For the molybdenum tricarbonyl complexes the activation barriers of η66-IHR decrease additionally by ~ 5 kcal mol–1 compared to those for the chromium tricarbonyl complexes, whereas for the tungsten tricarbonyl complexes they increase again and become approximately equal to the activation barriers of similar chromium tricarbonyl complexes. All stationary states on the potential energy surface determining the mechanism of η66-IHR are characterized by a decrease in hapticity compared to the initial and final complexes.  相似文献   

2.
A family of seven cationic gold complexes that contain both an alkyl substituted π‐allene ligand and an electron‐rich, sterically hindered supporting ligand was isolated in >90 % yield and characterized by spectroscopy and, in three cases, by X‐ray crystallography. Solution‐phase and solid‐state analysis of these complexes established preferential binding of gold to the less substituted C?C bond of the allene and to the allene π face trans to the substituent on the uncomplexed allenyl C?C bond. Kinetic analysis of intermolecular allene exchange established two‐term rate laws of the form rate=k1[complex]+k2[complex][allene] consistent with allene‐independent and allene‐dependent exchange pathways with energy barriers of ΔG1=17.4–18.8 and ΔG2=15.2–17.6 kcal mol?1, respectively. Variable temperature (VT) NMR analysis revealed fluxional behavior consistent with facile (ΔG=8.9–11.4 kcal mol?1) intramolecular exchange of the allene π faces through η1‐allene transition states and/or intermediates that retain a staggered arrangement of the allene substituents. VT NMR/spin saturation transfer analysis of [{P(tBu)2o‐binaphthyl}Au(η2‐4,5‐nonadiene) ]+SbF6? ( 5 ), which contains elements of chirality in both the phosphine and allene ligands, revealed no epimerization of the allene ligand below the threshold for intermolecular allene exchange (ΔG298K=17.4 kcal mol?1), which ruled out the participation of a η1‐allylic cation species in the low‐energy π‐face exchange process for this complex.  相似文献   

3.
It is shown that (1,2,7-η3-2-Me-benzyl)(η5-C5H5)Mo(CO)2 exits in solution as one isomer which is fluxional, probably via (7-η1-2-Me-benzyl)((η5-C5H5)Mo(CO)2, with ΔG370 = 23.6 ± 1.0 kcal mol−1. In contrast, (1,2,7-η3-3-Me-benzyl)(η5-C5H5)Mo(CO)2 exits as two isomers at −20°C, which undergo interconversion at room temperature with ΔG 15.7 kcal mol−1. This dynamic process is an allyl rotation. It is probable that there is also a low energy [1,5]-sigmatropic shift.  相似文献   

4.
Transfer hydrogenation of azobenzene with ammonia borane mediated by pincer bismuth complex 1 was systematically investigated through density functional theory calculations. An unusual metal-ligand cooperation mechanism was disclosed, in which the saturation/regeneration of the C=N functional group on the pincer ligand plays an essential role. The reaction is initiated by the hydrogenation of the C=N bond (saturation) with ammonia borane to afford 3CN , which is the rate-determining step with Gibbs energy barrier (ΔG) and Gibbs reaction energy (ΔG) of 25.6 and −7.3 kcal/mol, respectively. 3CN is then converted to a Bi−H intermediate through a water-bridged pathway, which is followed up with the transfer hydrogenation of azobenzene to produce the final product N,N′-diphenylhydrazine and regenerate the catalyst. Finally, the catalyst could be improved by substituting the phenyl group for the tert-butyl group on the pincer ligand, where the ΔG value (rate-determining step) decreases to 24.0 kcal/mol.  相似文献   

5.
Activation barriers for fast 1,3-N,N' migrations of phenylmercury groups in the corresponding derivatives of N,N'-di(p-tolyl)form(benz)amidines have been calculated by density functional theory B3LYP/Gen, 6-311++G(d,p)/SDD to be ΔE ZPE = 4.5 and 3.0 kcal/mol. The results correspond to the data of dynamic NMR, which have shown the upper limit of activation barriers of these rearrangements (ΔG) to be below 8 kcal/mol. The calculations have shown that the most stable is the E-syn form of N-phenylmercury-N,N'-di(p-tolyl)form(benz)amidines stabilized by supplementary intramolecular coordination of mercury atom with imine nitrogen atom of the amidine triad.  相似文献   

6.
Density functional theory calculations modelling selective exo-H/D exchange observed in the Rh σ-alkane complex [(Cy2PCH2CH2PCy2)Rh(η22-endo-NBA)][BArF4], [1-NBA][BArF 4 ] , are reported, where ArF=3,5-C6H3(CF3)2 and NBA=norbornane, C7H12. Two models were considered 1) an isolated molecular cation, [1-NBA]+ and 2) a full model in which [1-NBA][BArF 4 ] is treated in the solid state through periodic DFT. After an initial endo-exo rearrangement, both models predict H/D exchange to proceed through D2 addition and oxidative cleavage followed by a rate-limiting C−H activation of the norbornane through a σ-CAM step to form a [1-Rh(D)(η2-HD)(norbornyl)]+ intermediate. HD rotation followed by a σ-CAM C−D bond formation, HD reductive coupling and HD loss then complete the H/D exchange process. exo-H/D exchange is facilitated by a supporting agostic interaction and is consistently more accessible kinetically than the potentially competing endo-H/D exchange (isolated cation: ΔGexo=+15.9 kcal/mol, ΔGendo=+18.4 kcal/mol; solid state: ΔGexo=+22.1 kcal/mol, ΔGendo=+25.1 kcal/mol). The solid-state environment has a significant impact on the computed energetics, with barriers increasing by ca. 7 kcal/mol, while only the solid-state model correctly predicts the endo-bound NBA complex to be the resting state of the system. These outcomes reflect solid-state confinement effects within the pocket occupied by the [1-NBA]+ cation and defined by the pseudo-octahedral array of neighbouring [BArF4] anions. The asymmetry of the solid-state environment also requires a second H/D exchange pathway to be defined to account for reaction at all four exo-C−H bonds. These entail slightly higher barriers (ΔGexo= +24.8 kcal/mol, ΔGendo=+27.5 kcal/mol) but retain a distinct preference for exo- over endo-H/D exchange.  相似文献   

7.
For phenylselenyl cyclohexane (1) ring inversion barriers (ΔG278 of 11.7 ± 0.2 (eq-1 → ax-1) and 10.5 ± 0.2 kcal/mol (ax-1 → eq-1) and an A-value of 1.1 were determined. Extraordinarily large diamagnetic γ effects of ca 30–40 ppm per CH2 group were found.  相似文献   

8.
We report that 2,6‐lutidine?trichloroborane (Lut?BCl3) reacts with H2 in toluene, bromobenzene, dichloromethane, and Lut solvents producing the neutral hydride, Lut?BHCl2. The mechanism was modeled with density functional theory, and energies of stationary states were calculated at the G3(MP2)B3 level of theory. Lut?BCl3 was calculated to react with H2 and form the ion pair, [LutH+][HBCl3?], with a barrier of ΔH=24.7 kcal mol?1G=29.8 kcal mol?1). Metathesis with a second molecule of Lut?BCl3 produced Lut?BHCl2 and [LutH+][BCl4?]. The overall reaction is exothermic by 6.0 kcal mol?1rG°=?1.1). Alternate pathways were explored involving the borenium cation (LutBCl2+) and the four‐membered boracycle [(CH2{NC5H3Me})BCl2]. Barriers for addition of H2 across the Lut/LutBCl2+ pair and the boracycle B?C bond are substantially higher (ΔG=42.1 and 49.4 kcal mol?1, respectively), such that these pathways are excluded. The barrier for addition of H2 to the boracycle B?N bond is comparable (ΔH=28.5 and ΔG=32 kcal mol?1). Conversion of the intermediate 2‐(BHCl2CH2)‐6‐Me(C5H3NH) to Lut?BHCl2 may occur by intermolecular steps involving proton/hydride transfers to Lut/BCl3. Intramolecular protodeboronation, which could form Lut?BHCl2 directly, is prohibited by a high barrier (ΔH=52, ΔG=51 kcal mol?1).  相似文献   

9.
Quantum-chemical calculations in terms of the density functional theory showed that cyclopolyenyl isocyanides RNC are considerably less stable than the corresponding cyanides and that they are capable of undergoing RNC → RCN isomerization according to both 1,2-shift mechanism (cyclopropenyl and cyclopentadienyl isocyanides; ΔE = 35.0 and 37.5 kcal/mol, respectively) and previously unknown 2,5-sigmatropic shift mechanism (cycloheptatrienyl isocyanide, ΔE = 26.4 kcal/mol). Migration of cyano group in the cyclopentadiene and cycloheptatriene systems follows the 1,5-sigmatropic shift pattern. The activation barrier to 1,5-shift of cyano group around the cycloheptatriene ring was estimated by dynamic NMR in deuterated nitrobenzene (ΔG 190°C = 26.5 kcal/mol).  相似文献   

10.
Dynamic NMR has revealed intramolecular migrations of hydrogen atom over the periphery of the five-membered ring in 5-(p-tolyl)-1,2,3,4-tetraphenylcyclopentadiene in a deuteronitrobenzene solution with energy barrier ΔG 180 = 24.8 kcal/mol. Quantum-chemical DFT calculations B3LYP/6-311++G** have shown that such migrations in 1,2,3,4,5-pentaphenylcyclopentadiene in the gas phase occur in a chiral conformation of propeller type by the mechanism of 1,5-sigmatropic hydrogen shifts with retention of configuration through asymmetric transition state with energy barrier ΔE ZPE = 25.9 kcal/mol. Enantiomers P and M can readily interconvert into each other (ΔE ZPE = 3.9 kcal/mol) owing to synchronous flip rotations of the phenyl groups.  相似文献   

11.
12.
The electronic structure and redox properties of the highly oxidizing, isolable RuV?O complex [RuV(N4O)(O)]2+, its oxidation reactions with saturated alkanes (cyclohexane and methane) and inorganic substrates (hydrochloric acid and water), and its intermolecular coupling reaction have been examined by DFT calculations. The oxidation reactions with cyclohexane and methane proceed through hydrogen atom transfer in a transition state with a calculated free energy barrier of 10.8 and 23.8 kcal mol?1, respectively. The overall free energy activation barrier (ΔG=25.5 kcal mol?1) of oxidation of hydrochloric acid can be decomposed into two parts: the formation of [RuIII(N4O)(HOCl)]2+G=15.0 kcal mol?1) and the substitution of HOCl by a water molecule (ΔG=10.5 kcal mol?1). For water oxidation, nucleophilic attack on RuV?O by water, leading to O? O bond formation, has a free energy barrier of 24.0 kcal mol?1, the major component of which comes from the cleavage of the H? OH bond of water. Intermolecular self‐coupling of two molecules of [RuV(N4O)(O)]2+ leads to the [(N4O)RuIV? O2? RuIII(N4O)]4+ complex with a calculated free energy barrier of 12.0 kcal mol?1.  相似文献   

13.
S. Hirano  H. Hara  T. Hiyama  S. Fujita  H. Nozaki 《Tetrahedron》1975,31(18):2219-2227
A new preparative sequence from 2,3-polymethylene-2-cyclopentenone 5 to 2,6-polymethylenebromobenzenes 3 (n = 6, 7, 10) and 2,6-polymethylenephenyllithiums 6 has been found. The reaction of 6 with various electrophiles produces a number of new compounds to disclose the unique reactivity of the aryl C-Li moiety surrounded by the polymethylene chain. Photolysis of 3a and 3b provides transannular products 8, 10 and 11, all arising from the proximity between the aromatic bromine and the aliphatic hydrogen intraannularly opposed to be removed as HBr. Spectrometric study gives quantitative data of the dependence of the molecular geometry upon the chain length and the aromatic substituents. The energy barriers ΔGc of the conformational flipping are 17·4 kcal/mol (Tc 76·5°) for [6]metacyclophane (7a), 11·5 kcal/mol (Tc ?28°) for [7]metacyclophane (7b), ·8 kcal/mol for [10]metacyclophane (7c). The lower-energy process of the aliphatic chain in [6]metacyclophane derivatives is the pseudorotation with substituent-dependent barrier ΔGc 11·1 kcal/mol (Tc ?31·5°) for 7a, 12·4 kcal/mol (Tc ?4·5°) for 3a and 12·7 kcal/mol (Tc 1·0°) for 12a. The rather large rotational barrier is attributed to the compressed structure of each system. The benzene ring distortion of the cyclophanes is deduced from the bathochromic shift of the B-band and the diamagnetic shift of the benzene proton signals in the PMR.  相似文献   

14.
In this study, we use density functional theory calculations to investigate the discrepancy between two experimental results of Au(I)-catalyzed cycloisomerization reactions of alkynylhydroxyallyl tosylamide under similar reaction conditions, with the only variations being reaction temperature and time. The experimental results reported by Yeh and Chung groups, respectively, showed that 3-acyl-4-alkenylpyrrolidines are produced dominantly at ambient temperature, while 4-aza-6-oxatricyclo[3.3.0.02,8]octanes are produced in higher yield at elevated temperature. Using (Z)-4-([3-phenylprop-2-yn-1-yl]amino)but-2-en-1-ol and [Au(PPh3)]+ as the model starting material and active catalyst species, respectively, we identified two major pathways leading to 4-aza-6-oxatricyclo[3.3.0.02,8]octane (pathway I ) and 3-acyl-4-alkenylpyrrolidine (pathway II ). The overall free energy barrier (ΔGmax) and the energetic span (ΔGspan) of each pathway were 38.3 and 48.4 kcal/mol for pathway I and 29.0 and 37.1 kcal/mol for pathway II . Our analysis shows that the disparate outcomes observed in the experiments by two separate groups mainly originate in the reaction kinetics, with both the overall activation barrier and energetic span being the important factor.  相似文献   

15.
Density functional theory was used to study model ethylene reactions with CpTiIIIEt+A? (A? = CH3B(C6F5) 3 ? , or B(C6F5) 4 ? ; A? can be absent) compounds. The polymerization of ethylene on an isolated CpTiEt+ cation is hindered because of equilibrium between the CpTi(C2H4)Et+ primary complex and the primary product of CpTiBu+ insertion. At the same time, the polymerization of ethylene on CpTiEt+A? ion pairs (A? = CH3B(C6F5) 3 ? or B(C6F5) 4 ? ) is thermodynamically allowed (ΔE from ?26.2 to ?25.6 kcal/mol and ΔG 298 from ?10.9 to ?10.4 kcal/mol) and is not related to overcoming substantial energy barriers (ΔE # = 8.2?12.3 kcal/mol and ΔG 298 ) = 7.8?13.3 kcal/mol). The degree of polymerization can be low because of the effective occurrence of polymer chain termination by hydrogen transfer from the polymer chain to the monomer.  相似文献   

16.
IntroductionCycloureanitramineswithN trinitroethylgroupshaveagreaterdensityandahigherdetonationvelocity .Someofthecompoundscouldbeusedashighexplosives .1,5 Dimethyl 2 ,6 bis(2 ,2 ,2 trinitroethyl)glycoluril (1)isatypicalcycloureanitramine .Thecrystaldensityis1 74g/…  相似文献   

17.
Syntheses are described for a series of (η6-cyclophane)(η5cyclopentadienyl)iron(II) complexes, where the cyclophane moiety is anti-[2.2]metacyclophane, anti-4,12-dimethyl[2.2]metacyclophane, anti-4,12-dimethyl-7,15-dimethoxy[2.2]metacyclophane, and [2.2](2,5)thiophenophane. The triple-layered complexes η66-anti-[2.2]metacyclophane)bis[(η5-cyclopentadienyl)iron(II)] bis(hexafluorophosphate) and (η66-anti-4,12-dimethyl[2.2]metacyclophane)bis[(η5-cyclopentadienyl)iron(II)] bis(hexafluorophosphate) were also prepared. The NMR spectra of these compounds provide a useful insight into the nature of the iron-cyclophane bonding.  相似文献   

18.
Quantum chemical calculations by the density functional theory method at the B3LYP/6-311++G** level have shown that 5-nitro-5-methyl-1,2,3,4-tetramethoxycarbonylcyclopentadiene (1) and 5-nitro-2-methyl- 1,3,4,5-tetramethoxycarbonylcyclopentadiene (2) undergo interconversion by consecutive 1,5-sigmatropic shifts via the formation of an unstable isomer, 5-nitro-1-methyl-2,3,4,5- tetramethoxycarbonylcyclopentadiene (3), rather than through the NMR-detected 1,3-shift of the nitro group over the cyclopentadiene ring perimeter. According to calculations in the gas phase, isomer 3 is by ΔE ZPE of 3.6 kcal/mol less stable than isomer 1, while the activation barrier of the stepwise 1 → 2 process is 24.5 kcal/mol, which agrees well with NMR data (ΔG25C, chlorobenzene, 26.5 kcal/mol).  相似文献   

19.
Density functional theory [DFT B3LYP/6-311++G(d,p)] simulation has revealed stable tautomers and conformers of polydentate ligand system based on 5,7-di(tert-butyl)-2-(8-hydroxyquinolin-2-yl)-1,3-tropolone with different structures of the coordination nodes, capable of formation of metal chelates. It has been shown that the tautomeric NH- and OH- forms with exo and endo location of the hydroxy group in the quinoline fragments (close in energy, ΔEZPE = 0.2–2.4 kcal/mol) are stabilized by intramolecular hydrogen bonds. Energy barriers of the interconversion of these forms via rotation about the C–OH bond of the phenolic fragment are of ΔEZPE = 2.1–4.2 kcal/mol, whereas the barrier of rotation about the bond between the quinoline and tropolone fragments is higher (ΔEZPE = 18.2 and 19.6 kcal/mol).  相似文献   

20.
DFT calculations were performed to elucidate the oxidative addition mechanism of the dimeric palladium(II) abnormal N‐heterocyclic carbene complex 2 in the presence of phenyl chloride and NaOMe base under the framework of a Suzuki–Miyaura cross‐coupling reaction. Pre‐catalyst 2 undergoes facile, NaOMe‐assisted dissociation, which led to monomeric palladium(II) species 5 , 6 , and 7 , each of them independently capable of initiating oxidative addition reactions with PhCl. Thereafter, three different mechanistic routes, path a, path b, and path c, which originate from the catalytic species 5 , 7 , and 6 , were calculated at M06‐L ‐D3(SMD)/LANL2TZ(f)(Pd)/6–311++G**//M06‐L/LANL2DZ(Pd)/6–31+G* level of theory. All studied routes suggested the rather uncommon PdII/PdIV oxidative addition mechanism to be favourable under the ambient reaction conditions. Although the Pd0/PdII routes are generally facile, the final reductive elimination step from the catalytic complexes were energetically formidable. The PdII/PdIV activation barriers were calculated to be 11.3, 9.0, 26.7 kcal mol?1 (ΔΔGLS‐D3) more favourable than the PdII/Pd0 reductive elimination routes for path a, path b, and path c, respectively. Out of all the studied pathways, path a was the most feasible as it comprised of a PdII/PdIV activation barrier of 24.5 kcal mol?1GLS‐D3). To further elucidate the origin of transition‐state barriers, EDA calculations were performed for some key saddle points populating the energy profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号