首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid method for detecting cosmic rays and neutrino cascades using the radio method and the conventional method for detecting cascade particles was proposed. Cascades produced in the lunar soil near the surface by ultrahigh-energy cosmic rays and neutrinos in the energy range of 1 GeV–100 TeV, coming from above at different angles, were calculated. The calculated energy and angular distributions were extrapolated to the energy region of 1020 eV. Using these results, the detection threshold was estimated as 1020 eV which is approximately identical to the threshold for the radio detector previously considered by the authors.  相似文献   

2.
This is an introductory review about the ongoing search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultrahigh energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz’min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors γO(1011). For heavier nuclei, the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous γ-factors-far beyond accelerator tests-is a central issue.Next, we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent “Maximal Attainable Velocities”. We discuss their effect in decays, ?erenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays.We also review the search for LIV in cosmic γ-rays. For multi-TeV γ-rays, we encounter another possible puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not that far from the Planck scale. We discuss conceivable nonlinear photon dispersions based on non-commutative geometry or effective approaches.No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically.An Appendix is devoted to the recent results by the Pierre Auger Collaboration, in particular the hypothesis that nearby Active Galactic Nuclei-or objects next to them-could be the UHECR sources.  相似文献   

3.
Chemical composition of ultrahigh-energy cosmic rays is estimated through the reliably determined (both experimentally and theoretically) distribution of the number of showers in the galactic latitude. Experimental data at energies of ~1019 eV agree with the theoretical calculations, provided that cosmic rays involve predominantly heavy nuclei. An enhanced flux of cosmic rays from the galactic plane is detected at energies of ~1019 eV.  相似文献   

4.
Ultra High Energy Cosmic Rays (UHECRs) represent the most energetic source of elementary particles available to scientists. They have macroscopic energies, exceeding 5 × 1019 eV, and as yet unidentified sources. Unfortunately, their flux is as low as one particle per century per square kilometre, requiring dedicated detectors with huge apertures to obtain high-quality and statistically significant data-sets. Over the last three to four decades, a few tens of events at extreme energies were detected by ground-based cosmic ray detectors, opening a new window in the field of astroparticle physics. In this article, the physics of cosmic rays is reviewed briefly. We present a short history and the present status of the field mainly from an experimental point of view. Special attention is given to the Pierre Auger Observatory, the world's largest operating hybrid detector. The most recent and fascinating results are also presented and discussed. Finally, some attention is given to the next generation of detectors devoted to the exploration of the highest energy ranges, which is likely to dramatically increase our knowledge about UHECRs in the near future.  相似文献   

5.
Possible extragalactic sources of cosmic rays with energies above 4 × 1019 eV detected at the Yakutsk EAS array are sought. The correlation of the shower arrival directions with objects from Véron’s catalog that are located closer than 100 Mpc from the Earth confirms the observations at the Pierre Auger Observatory, as well as the Greisen-Zatsepin-Kuzmin effect on the spectrum of cosmic rays. The detailed analysis of the data reveals the classes of objects belonging to the active galactic nuclei that are the most probable sources of ultrahigh-energy cosmic rays.  相似文献   

6.
The results of the simulation of cascade radio emission from ultrahigh-energy cosmic rays in the LORD lunar experiment using circularly polarized antennas are presented. It is shown that based on the characteristics of radio emission caused by cascades from protons and iron nuclei in lunar regolith and escaped into vacuum it is impossible to distinguish these cascades in the primary energy region above 1020 eV.  相似文献   

7.
Detailed calculation of the energy spectra of ultrahigh-energy cosmic rays has been performed. The spectral features related to the interaction of protons with cosmic microwave background have been analyzed. The calculated spectra are compared with the experimental data obtained at the giant detectors for ultrahigh-energy cosmic rays.  相似文献   

8.
We discuss the GZK horizon of protons and present a method to constrain the injection spectrum of ultrahigh energy cosmic rays (UHECRs) from supposedly identified extragalactic sources. This method can be applied even when only one or two events per source are observed and is based on the analysis of the probability for a given source to populate different energy bins, depending on the actual cosmic ray injection spectral index. In particular, we show that for a typical source density of 4 × 10−5 Mpc−3, a data set of 100 events above 6 × 1019 eV allows one in 97% of all cases to distinguish a source spectrum dN/dEE −1.1 from one with E –2.7 at 95% confidence level. The article is published in the original.  相似文献   

9.
The complicated shape of the cosmic ray spectrum recorded by giant arrays in the energy range 1017–1020 eV is analyzed. It is shown that in the energy region ∼1018–1019 eV the spectrum probably coincides with the injection spectrum whose exponent is equal approximately to 3.2–3.3. The flatter component in the energy region (3.2–5.0)×1019 eV is due to braking of extragalactic protons on primordial photons (the cosmic background radiation). At energies exceeding 3.2×1019 eV the spectrum does not have a blackbody cutoff. The possibility of determining the distances at which cosmic rays originate and investigating the evolution of their sources on the basis of ultrahigh-energy cosmic ray data is discussed. Zh. éksp. Teor. Fiz. 113, 12–20 (January 1998)  相似文献   

10.
About 400 years have passed since the great discoveries by Galileo, Kepler, and Newton, but astronomy still remains an important source of discoveries in physics. They start with puzzles, with phenomena difficult to explain, and phenomena which in fact need new physics for explanation. Do such puzzles exist now? There are at least three candidates: absence of absorption of TeV gamma radiation in extragalactic space (violation of Lorentz invariance?), absence of GZK cutoff in the spectrum of ultrahigh-energy cosmic rays (new particle physics?), tremendous energy (up to 1054 erg) released in gamma ray bursts on a time scale of a second (collapsing stars or sources of a new type?). Do these puzzles really exist? A critical review of these phenomena is given.  相似文献   

11.
A. A. Ivanov 《JETP Letters》2010,91(5):209-214
The analysis of the systematic errors in the determination of the energy of the particles of primary cosmic radiation that are inherent in the method for measuring extensive air showers (EASs) indicates the necessity of the exact inclusion of fragmentation in the nuclear interactions. The application of such a model developed for describing the experiments at the Relativistic Heavy Ion Collider improves the agreement between the energy spectra of the ultrahigh-energy cosmic rays measured at giant EAS arrays. It has been shown that the difference between the measured primary cosmic radiation flux intensities and the energies of the primary particles is within the methodical and instrumental errors. The real accuracy of the EAS method of studying ultrahigh-energy cosmic rays has been estimated using the data from six arrays.  相似文献   

12.
This review focuses on high-energy cosmic rays in the PeV energy range and above. Of particular interest is the knee of the spectrum around 3 PeV and the transition from cosmic rays of Galactic origin to particles from extra-galactic sources. Our goal is to establish a baseline spectrum from 1014 to 10^20 eV by combining the results of many measurements at different energies. In combination with measurements of the nuclear composition of the primaries, the shape of the energy spectrum places constraints on the number and spectra of sources that may contribute to the observed spectrum.  相似文献   

13.
An Antarctic balloon experiment for measuring the energy spectrum and elemental composition of cosmic rays in the ultrahigh-energy range (1018–1020) eV is proposed. Scientific equipment will measure fluorescence caused by an extensive air shower formed in the atmosphere by an ultrahigh energy particle and Cherenkov light of this shower reflected from a snow surface. It is assumed that the balloon will fly in the circumpolar orbit in Antarctica at a height of ~25 km for (2–3) winter (in the Southern Hemisphere)months. For this time, ~3000 events caused by particles with energies above 1018 eV and (200–300) events caused by particles with energies above 1019 eV will be detected.  相似文献   

14.
It was shown that the effect of plasma production during solid medium ionization by a developing cascade can shield excess-charge radiation in the radio range used for detecting particles at energies higher than 1020 eV. Such a shielding effect is significant in Antarctic ice and is insignificant for lunar regolith. Hence, the LORD experiment on detection of cascades from ultrahigh-energy cosmic rays and neutrinos from circumlunar spacecrafts retains the capability of measurements up to the energies of 1023 eV.  相似文献   

15.
Kachelrieß  M.  Parizot  E.  Semikoz  D. V. 《JETP Letters》2008,88(9):553-557
JETP Letters - We discuss the GZK horizon of protons and present a method to constrain the injection spectrum of ultrahigh energy cosmic rays (UHECRs) from supposedly identified extragalactic...  相似文献   

16.
We show that “top-down” mechanisms of ultrahigh-energy cosmic rays which involve heavy relic particle-like objects predict a Galactic anisotropy of the highest-energy cosmic rays at the level of minimum ∼ 20%. This anisotropy is large enough to be either observed or ruled out in the next generation of experiments. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 2, 99–103 (25 July 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

17.
This review summarizes recent developments in the understanding of high-energy cosmic rays. It focuses on galactic and presumably extragalactic particles in the energy range from the knee (1015 eV ) up to the highest energies observed (>1020 eV). Emphasis is put on observational results, their interpretation, and the global picture of cosmic rays that has emerged during the last decade.  相似文献   

18.
Cosmic rays of the highest energy, above the Greisen-Zatsepin-Kuzmin (GZK) cutoff of the spectrum, may originate in decays of superheavy long-lived particles. We conjecture that these particles may be produced naturally in the early Universe from vacuum fluctuations during inflation and may constitute a considerable fraction of cold dark matter. We predict a new cutoff in the ultrahigh-energy cosmic ray spectrum E cutoff<m inflaton≈1013 GeV, the exact position of the cutoff and the shape of the cosmic ray spectrum beyond the GZK cutoff being determined by the QCD quark/gluon fragmentation. The Pierre Auger Project installation may in principle observe this phenomenon. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 4, 255–259 (25 August 1998)  相似文献   

19.
If decays of superheavy relic particles in the galactic halo are responsible for ultrahigh-energy cosmic rays, these particles must be clustered to account for small-scale anisotropy in the AGASA data. We show that the masses of such clusters are large enough for them to gravitationally lens stars and galaxies in the background. We propose a general strategy that can be used to detect such clusters via gravitational lensing, or to rule out the hypothesis of decaying relic particles as the origin of highest energy cosmic rays.  相似文献   

20.
The arrival directions of extensive air showers are analyzed on the basis of world data. It is found that the zenith-angle distributions for energies E>1019 eV and E>4×1019 eV differ from each other. According to our estimates, the SUGAR array detects no showers above 1020 eV. The mass composition of ultrahigh-energy cosmic rays is estimated. Cosmic rays with E>4×1019 eV most likely consist of superheavy nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号