首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of the electronic structure of molecular aggregates is investigated using anion photoelectron (PE) spectroscopy for anionic clusters of anthracene (Ac) and its alkyl derivatives: 1-methylanthracene (1MA), 2-methylanthracene (2MA), 9-methylanthracene (9MA), 9,10-dimethylanthracene (DMA), and 2-tert-butylanthracene (2TBA). For their monomer anions (n=1), electron affinities are confined to the range from 0.47 to 0.59 eV and are well reproduced by density functional theory calculations, showing the isoelectronic character of these molecules. For cluster anions (n=2-100) of Ac and 2MA, two types of isomers I and II coexist over a wide size range: isomers I and II-1 (4< or =n<30) or isomers I and II-2 (n> or = approximately 40 for Ac and n> or = approximately 55 for 2MA). However, for the other alkyl-substituted Ac cluster anions (i.e., 1MA, 9MA, DMA, and 2TBA), only isomer I is exclusively formed, and neither isomer II-1 nor II-2 is observed. The vertical detachment energies (VDEs) of isomer I in all the anionic clusters depend almost linearly on n(-1/3). In contrast, the VDEs of isomers II-1 (n> or =14) and II-2 (n=40-100), appeared only in Ac and 2MA cluster anions, remain constant with n and are approximately 0.5 eV lower than those of isomer I. The PE spectra revealed the characteristics of each isomer: isomer I possesses a monomeric anion core that is gradually embedded into the interior of the cluster with increasing n. On the other hand, isomers II-1 and II-2 possess a multimeric (perhaps tetrameric) anion core, but they differ in the number of layers from which they are made up; monolayer (isomer II-1) and multilayers (isomer II-2) of a two-dimensionally ordered, finite herringbone-type structure, in which electron attachment produces only little geometrical rearrangement. Moreover, the agreement of the constant VDEs of isomer II-2 with the bulk data demonstrates the largely localized nature of the electronic polarization around the excess charge in a crystal-like environment, where about 50 molecules provide a charge stabilization energy comparable to the bulk.  相似文献   

2.
The electronic structures and structural morphologies of naphthalene cluster anions, (naphthalene)(n)(-) (n=3-150), and its related aromatic cluster anions, (acenaphthene)(n)(-) (n=4-100) and (azulene)(n)(-) (n=1-100), are studied using anion photoelectron spectroscopy. For (naphthalene)(n) (-) clusters, two isomers coexist over a wide size range: isomers I and II-1 (28 < or = n < or =60) or isomers I and II-2 (n > or = ~60). Their contributions to the photoelectron spectra can be separated using an anion beam hole-burning technique. In contrast, such an isomer coexistence is not observed for (acenaphthene)(n) (-) and (azulene)(n) (-) clusters, where isomer I is exclusively formed throughout the whole size range. The vertical detachment energies (VDEs) of isomer I (7 < or = n < or = 100) in all the anionic clusters depend linearly on n(-13) and their size-dependent energetics are quite similar to one another. On the other hand, the VDEs of isomers II-1 and II-2 produced in (naphthalene)(n)(-) clusters with n > or = approximately 30 remain constant at 0.84 and 0.99 eV, respectively, 0.4-0.6 eV lower than those of isomer I. Based upon the ion source condition dependence and the hole-burning photoelectron spectra experiments for each isomer, the energetics and characteristics of isomers I, II-1, and II-2 are discussed: isomer I is an internalized anion state accompanied by a large change in its cluster geometry after electron attachment, while isomers II-1 and II-2 are crystal-like states with little structural relaxation. The nonappearance of isomers II-1 and II-2 for (acenaphthene)(n)(-) and (azulene)(n)(-) and a comparison with other aromatic cluster anions indicate that a highly anisotropic and symmetric pi-conjugated molecular framework, such as found in the linear oligoacenes, is an essential factor for the formation of the crystal-like ordered forms (isomers II-1 and II-2). On the other hand, lowering the molecular symmetry makes their production unfavorable.  相似文献   

3.
Water cluster anions, (H(2)O)(N)(-), are examined using mixed quantum/classical molecular dynamics based on a one-electron pseudopotential model that incorporates many-body polarization and predicts vertical electron detachment energies (VDEs) with an accuracy of ~0.1 eV. By varying the initial conditions under which the clusters are formed, we are able to identify four distinct isomer types that exhibit different size-dependent VDEs. On the basis of a strong correlation between the electron's radius of gyration and its optical absorption maximum, and extrapolating to the bulk limit (N → ∞), our analysis supports the assignment of the "isomer Ib" data series, observed in photoelectron spectra of very cold clusters, as arising from cavity-bound (H(2)O)(N)(-) cluster isomers. The "isomer I" data reported in warmer experiments are assigned to surface-bound isomers in smaller clusters, transitioning to partially embedded isomers in larger clusters. The partially embedded isomers are characterized by a partially formed solvent cavity at the cluster surface, and they are spectroscopically quite similar to internalized cavity isomers. These assignments are consistent with various experimental data, and our theoretical characterization of these isomers sheds new light on a long-standing assignment problem.  相似文献   

4.
The isomers of (H(2)O)(24) (-) tetrakaidecahedral cluster are studied by applying the Becke-3-parameter density functional theory and Lee-Yang-Parr correlation functional (B3LYP) and 6-311++G** basis set. Three isomers are selected on the basis of stabilization energy values. The vertical electron dissociation energies (VDE) of these isomers are 1.353, 0.404, and 0.258 eV, respectively. The experimental VDE value of 1.31 eV [J. Chem. Phys. 92, 3980 (1990)] for this cluster size is in excellent agreement with that calculated for isomer 1, suggesting the dominance of this isomer in the experiment. Four water molecules in this isomer share most of the -1 charge. These four water molecules have non-H-bonding H (NHB H) atoms turned toward the cavity, and the inward turned H atoms exhibit a significant lowering of O-H stretch frequency compared to that of a monomer. Isomers 2 and 3 have all 12 NHB H atoms projected outward and have the -1 charge distributed among 7-8 water molecules on the cluster surface.  相似文献   

5.
Mass spectrometry and photoelectron spectroscopy of o-, m-, and p-terphenyl cluster anions, (o-TP)n(-) (n = 2-100), (m-TP)n(-) (n = 2-100), and (p-TP)n(-) (n = 1-100), respectively, are conducted to investigate the effect of molecular shape on the molecular aggregation form and the resultant ion core character of the clusters. For (o-TP)n(-) and (m-TP)n(-), neither magic numbers nor discernible isomers are observed throughout the size range. Furthermore, their vertical detachment energies (VDEs) increase up to large n and depend linearly on n(-1/3), implying that they possess a three-dimensional (3D), highly reorganized structure encompassing a monomeric anion core. For (p-TP)n(-), in contrast, prominent magic numbers of n = 5, 7, 10, 12, and 14 are observed, and the VDEs show pronounced irregular shifts below n = 10, while they remain constant above n = 14 (isomer A). These results can be rationalized with two-dimensional (2D) orderings of p-TP molecules and different types of 2D shell closure at n = 7 and 14, the monomeric and multimeric anion core, respectively. Above n = 16, the new feature (isomer B) starts to appear at the higher binding side of isomer A, and it becomes dominant with n, while isomer A gradually disappears for larger sizes. In contrast to isomer A, the VDEs of isomer B continuously increase with the cluster size. This characteristic size evolution suggests that the transition to modified 2D aggregation forms from 2D ones occurs at around n = 20.  相似文献   

6.
The growth of tetracene on GaSe half-sheet passivated Si(111) is investigated under ultrahigh vacuum (UHV) using low-energy electron diffraction (LEED) and photoelectron spectroscopy (PS). A highly ordered thin-film growth was observed in the initial stages of the deposition process. All proposed structures form a coincidence lattice with the underlying substrate, due to the influence of the molecule-substrate interactions and are built up by either flat lying tetracene molecules at low coverage or tilted molecules at higher coverages. Photoelectron spectroscopy (XPS/UPS) shows that the deposited tetracene molecules induce band bending in the silicon substrate. No band bending was observed in the tetracene film, and an interface dipole potential of 0.45 eV was measured between the GaSe passivated Si(111) surface and the tetracene film.  相似文献   

7.
Theoretical studies of the solvated electrons (HCN)n- (n=3, 4) reveal a variety of electron trapping possibilities in the (HCN)n (n=3, 4) clusters. Two isomers for (HCN)3- and four isomers for (HCN)4- are obtained at the MP2aug-cc-pVDZ+dBF (diffusive bond functions) level of theory. In view of vertical electron detachment energies (VDEs) at the CCSD(T) level, the excess electron always "prefers" locating in the center of the system, i.e., the isomer with higher coordination number shows larger VDE value. However, the most stable isomers of the solvated electron state (HCN)3- and (HCN)4- are found to be the linear Cinfinitynu and Dinfinityh structures, respectively, but not the fullyl symmetric structures which have the largest VDE values.  相似文献   

8.
We present benchmark calculations of vertical electron detachment energies (VDEs) for various conformers of (H2O)n-, using both wave function and density functional methods, in sequences of increasingly diffuse Gaussian basis sets. For small clusters (n < or = 6), a systematic examination of VDE convergence reveals that it is possible to converge this quantity to within approximately 0.01 eV of the complete-basis limit, using a highly diffuse but otherwise economical Pople-style basis set of double-zeta quality, with 28 atom-centered basis functions per water molecule. Floating-center basis functions can be useful but are not required to obtain accurate VDEs. Second-order M?ller-Plesset perturbation (MP2) theory suffices to obtain VDEs that are within 0.05 eV of the results from both experiment and coupled-cluster theory, and which always err toward underbinding the extra electron. In contrast to these consistent predictions, VDEs calculated using density functional theory (DFT) vary widely, according to the fraction of Hartree-Fock exchange in a given functional. Common functionals such as BLYP and B3LYP overestimate the VDE by 0.2-0.5 eV, whereas a variant of Becke's "half and half" functional is much closer to coupled-cluster predictions. Exploratory calculations for (H2O)20- and (H2O)24- cast considerable doubt on earlier calculations that were used to assign the photoelectron spectra of these species to particular cluster isomers.  相似文献   

9.
Electron solvation in methanol anion clusters, (MeOH)(n) (-) (n approximately 70-460), is studied by photoelectron imaging. Two isomers are observed: methanol I, with vertical binding energies (VBE) ranging from 2-2.5 eV, and methanol II, with much lower VBE's between 0.2 and 0.5 eV. The VBE's of the two isomers depend linearly on n(-1/3) with nearly identical slopes. We propose that the excess electron is internally solvated in methanol I clusters, whereas in methanol II it resides in a dipole-bound surface-state. Evidence of an excited state accessible at 1.55 eV is observed for methanol I.  相似文献   

10.
The electronic structure of tetracene on Cu (110) surface has been studied by using ultraviolet photoemission spectroscopy (UPS). The emission features from the organic molecule are located from 1 to 10 eV below the Fermi level, and they shift in binding energy with increasing the coverage of the organic material. For the surface with multilayer of tetracene, six well-resolved features were found at 1.90, 3.40, 4.70, 5.95, 6.95, and 9.15 eV below the Fermi level, respectively. On the surface with a lower coverage of tetracene, angle-resolved UPS measurements suggest that the molecular plane is parallel to the substrate. Density functional theory calculation confirms the flat-lying adsorption mode and shows that the tetracene molecule prefers to be adsorbed on the long bridge site with its long axis in the [110] azimuth.  相似文献   

11.
The substitution of chloro or bromo groups in tetracene gives rise to the change of crystal structure, having a substantial effect on carrier transport. Halogenated tetracene derivatives were synthesized and grown into single crystals. Monosubstituted 5-bromo- and 5-chlorotetracenes have the herringbone-type structure, while 5,11-dichlorotetracene has the slipped pi stacking structure. Mobility of 5,11-dichlorotetracene was measured to be as high as 1.6 cm2/V.s in single-crystal transistors. The pi stacking structure, which enhances pi orbital overlap and facilitates carrier transport, may thus be responsible for this high mobility.  相似文献   

12.
Electronic relaxation dynamics of water cluster anions   总被引:1,自引:0,他引:1  
The electronic relaxation dynamics of water cluster anions, (H(2)O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p<--s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D)2(O)/tau(H)2(O) approximately 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n > or = 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 < or = n < or = 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs.  相似文献   

13.
The potential energy surfaces of the Li(n)Si(4)(-) (n = 0-5) clusters were explored using the Kick Coalescence method. We found that, for those systems with n ≤ 2, the butterfly and parallelogram Si(4)(2-) kernels prevail as building blocks; however, when n ≥ 3, the Si(4)(4-) tetrahedral kernel, which is commonly found in heavier alkali monosilicides, MSi (M = Na, K, Rb, Cs), arises as the prevailing building block. In addition, by a natural population analysis (NPA) we found that the maximum charge transfer -4 from Li atoms to Si atoms is attained when n = 3. The addition of more Li atoms to the Si(4)(4-) system does not increase the charge transfer, but keeps it almost constant at the maximum value. We also calculated theoretical vertical electron detachment energies (VDEs) for low-lying isomers of the Li(n)Si(4)(-) (n = 0-4) clusters in order to facilitate their experimental identification.  相似文献   

14.
It has been shown that the real escape depth L of low-energy (? 2 eV) electrons determined in homogeneous tetracene films (obtained by vacuum evaporation on cooled substrate at 120 K) does not exceed 6–10 A. For such small L values photoemission should be considered as essentially a surface phenomenon since the energy distribution of emitted photoelectrons substantially depends on energetic and structural peculiarities of the near-surface molecules of the crystal.  相似文献   

15.
Ye Q  Chang J  Huang KW  Chi C 《Organic letters》2011,13(22):5960-5963
The first tetracene diimide derivative fused with four thiophene rings, TT-TDI, was synthesized by an FeCl(3) mediated oxidative cyclodehydrogenation reaction. TT-TDI exhibited a low band gap of 1.52 eV and amphoteric redox behavior. TT-TDI also showed a liquid crystalline property and ambipolar charge transport in thin film field-effect transistors.  相似文献   

16.
Bichromophoric molecules can support two spatially separated excited states simultaneously and thus provide novel pathways for electronic state relaxation. Exciton fission, where absorption of a single photon leads to two triplet states, is a potentially useful example of such a pathway. In this paper, a detailed study of exciton fission in three novel phenylene-linked bis(tetracene) molecules is presented. Their spectroscopy is analyzed in terms of a three-state kinetic model in which the singlet excited state can fission into a triplet pair state, which in turn undergoes recombination on a time scale longer than the molecule's radiative lifetime. This model allows us to fit both the prompt and delayed fluorescence decay data quantitatively. The para-phenylene linked bis(tetracene) molecules 1,4-bis(tetracen-5-yl)benzene (1) and 4,4'-bis(tetracen-5-yl)biphenylene (2) show intramolecular exciton fission with yields of approximately 3%, whereas no delayed fluorescence is observed for tetracene or the meta-linked molecule 1,3-bis(tetracen-5-yl)benzene 3. Analysis of the temperature-dependent fluorescence dynamics yields activation energies for fission of (10.0 +/- 0.6) kJ/mol for 1 and (4.1 +/- 0.5) kJ/mol for 2, with Arrhenius prefactors of (1.48 +/- 0.04) x 10(8) s(-1) for 1 and (1.72 +/- 0.02) x 10(7) s(-1) for 2. The observed trends in activation energies are reproduced by ab initio calculations of the independently optimized singlet and triplet energies. The calculations indicate that electronic coupling between the two tetracene units is primarily through-bond, allowing differences in fission rates to be qualitatively explained in terms of the linker structure as well. Our results show that it is important to consider the effects of the linker structure on both energy relaxation and electronic coupling in bichromophoric molecules. This study provides insight into the structural and energetic factors that should be taken into account in the design of exciton fission molecules for possible solar cell applications.  相似文献   

17.
We present a reinvestigation of sulfate-water clusters SO4(2-) (H2O)(n=3-7), which involves several new aspects. Using a joint molecular mechanics/first principles approach, we perform exhaustive searches for stable cluster geometries, showing that the sulfate-water landscape is much richer than anticipated previously. We check the compatibility of the new structures with experiment by comparing vertical detachment energies (VDEs) calculated at the B3LYP/6-311++G** level of theory and determine the energetic ordering of the isomers at the RI-MP2/aug-cc-pVTZ level. Our results are bench-marked carefully against reference energies of estimated CCSD(T)/aug-cc-VTZ quality and VDEs of CCSD(T)/aug-cc-pVDZ quality. Furthermore, we calculate anharmonic vibrational corrections for up to the n = 6 clusters, which are shown to be significant for isomer energy ordering. We use energy decomposition analysis (EDA) based on the absolutely localized fragment (ALMO) expansion to gain chemical insight into the binding motifs.  相似文献   

18.
Electron binding motifs in cluster anions of primary amides, (acetamide)(n)(-) and (propionamide)(n)(-), were studied with photoelectron spectroscopy. For both the amides, two band series due to distinct isomeric species in the multipole-bound states were found in the low electron binding energy region (<~0.4 eV) of the photoelectron spectra at the excitation wavelength of 1064 nm. In the case of acetamide, the isomer of higher band peak energies is predominant for 6≤ n ≤ 8, but it vanishes completely for n ≥ 9 to be replaced with the lower energy isomer. The same spectral behavior was seen for propionamide exhibiting an exception at n = 7. The isomers appearing in the lower and higher energy sides were attributed to the straight and folded forms of ladder-like hydrogen bond network structures, respectively, on the basis of density functional calculations. In the folded forms, the excess electron is held in the space between two terminal amide molecules of the ladder-like networks. Referring to calculations of potential energy curves with respect to the folding coordinate of the ladder-like networks, it is inferred that the major isomer alternation between n = 8 and 9 originates from an increase of stiffness of the molecular ladders depending on the cluster sizes. In photoelectron spectra at the 355 nm excitation, the valence anion state having a band peak around 2.5 eV was observed to emerge with threshold sizes of n = 13 and 9 for acetamide and propionamide, respectively. Static and dynamical effects of alkyl groups on the electron binding motifs are discussed in comparison with the previous study on formamide cluster anions.  相似文献   

19.
Vertical electron detachment energies (VDEs) are calculated for a variety of (H(2)O)(n)(-) and (HF)(n)(-) isomers, using different electronic structure methodologies but focusing in particular on a comparison between second-order M?ller-Plesset perturbation theory (MP2) and coupled-cluster theory with noniterative triples, CCSD(T). For the surface-bound electrons that characterize small (H(2)O)(n)(-) clusters (n< or = 7), the correlation energy associated with the unpaired electron grows linearly as a function of the VDE but is unrelated to the number of monomers, n. In every example considered here, including strongly-bound "cavity" isomers of (H(2)O)(24)(-), the correlation energy associated with the unpaired electron is significantly smaller than that associated with typical valence electrons. As a result, the error in the MP2 detachment energy, as a fraction of the CCSD(T) value, approaches a limit of about -7% for (H(2)O)(n)(-) clusters with VDEs larger than about 0.4 eV. CCSD(T) detachment energies are bounded from below by MP2 values and from above by VDEs calculated using second-order many-body perturbation theory with molecular orbitals obtained from density functional theory. For a variety of both strongly- and weakly-bound isomers of (H(2)O)(20)(-) and (H(2)O)(24)(-), including both surface states and cavity states, these bounds afford typical error bars of +/-0.1 eV. We have found only one case where the Hartree-Fock and density functional orbitals differ qualitatively; in this case the aforementioned bounds lie 0.4 eV apart, and second-order perturbation theory may not be reliable.  相似文献   

20.
Clusters of tetracene molecules with different numbers of attached (Ar)(N), (Ne)(N) and (H(2))(N) particles (N = 1-2000) are assembled inside superfluid He nanodroplets and studied via laser-induced fluorescence. The frequency shift of the fluorescence spectrum of the tetracene molecules is studied as a function of cluster size and pickup order of tetracene and cluster species. For (Ar)(N) and (Ne)(N) clusters, our results indicate that the tetracene molecules reside inside the clusters when tetracene is captured by the He nanodroplet before the cluster species; conversely, the tetracene molecules stay on the surface of the clusters when tetracene is captured after the cluster species. In the case of (H(2))(N) clusters, however, tetracene molecules reside inside the (H(2))(N) clusters irrespective of the pickup order. We conclude that (Ar)(N) and (Ne)(N) clusters are rigid at T = 0.38 K, while (H(2))(N) clusters of up to N = 2000 remain fluxional at the same temperature. The results may also indicate the occurrence of heterogeneous nucleation of the (H(2))(N) clusters, which is induced by the interaction with tetracene chromophore molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号