首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an infinite-buffer single server queue where arrivals occur according to a batch Markovian arrival process (BMAP). The server serves until system emptied and after that server takes a vacation. The server will take a maximum number H of vacations until either he finds at least one customer in the queue or the server has exhaustively taken all the vacations. We obtain queue length distributions at various epochs such as, service completion/vacation termination, pre-arrival, arbitrary, departure, etc. Some important performance measures, like mean queue lengths and mean waiting times, etc. have been obtained. Several other vacation queueing models like, single and multiple vacation model, queues with exceptional first vacation time, etc. can be considered as special cases of our model.  相似文献   

2.
《Optimization》2012,61(3):445-453
This paper studies the transient behaviour of tandem queueing system consisting of an arbitrary number r of queues in series with infinite server service facility at each queue. Poisson arrivals with time dependent parameter and exponential service times have been assumed. Infinite server queues realistically describe those queues in which sufficient service capacity exist to prevent virtually any waiting by the customer present. The model is suitable for both phase type service as well services in series. Very elegant solutions have been obtained and it has been shown that if the queue sizes are initially independent and Poisson then they remain independent and Poisson for all t.  相似文献   

3.
A queueingnetwork that is served by asingle server in a cyclic order is analyzed in this paper. Customers arrive at the queues from outside the network according to independent Poisson processes. Upon completion of his service, a customer mayleave the network, berouted to another queue in the network orrejoin the same queue for another portion of service. The single server moves through the different queues of the network in a cyclic manner. Whenever the server arrives at a queue (polls the queue), he serves the waiting customers in that queue according to some service discipline. Both the gated and the exhaustive disciplines are considered. When moving from one queue to the next queue, the server incurs a switch-over period. This queueing network model has many applications in communication, computer, robotics and manufacturing systems. Examples include token rings, single-processor multi-task systems and others. For this model, we derive the generating function and the expected number of customers present in the network queues at arbitrary epochs, and compute the expected values of the delays observed by the customers. In addition, we derive the expected delay of customers that follow a specific route in the network, and we introduce pseudo-conservation laws for this network of queues.Summary of notation Bi, B i * (s) service time of a customer at queue i and its LST - bi, bi (2) mean and second moment of Bi - Ri, R i * (s) duration of switch-over period from queue i and its LST - ri, ri mean and second moment of Ri - r, r(2) mean and second moment of i N =1Ri - i external arrival rate of type-i customers - i total arrival rate into queue i - i utilization of queue i; i=i - system utilization i N =1i - c=E[C] the expected cycle length - X i j number of customers in queue j when queue i is polled - Xi=X i i number of customers residing in queue i when it is polled - fi(j) - X i * number of customers residing in queue i at an arbitrary moment - Yi the duration of a service period of queue i - Wi,Ti the waiting time and sojourn time of an arbitary customer at queue i - F*(z1, z2,..., zN) GF of number of customers present at the queues at arbitrary moments - Fi(z1, z2,..., zN) GF of number of customers present at the queues at polling instants of queue i - ¯Fi(z1, z2,...,zN) GF of number of customers present at the queues at switching instants of queue i - Vi(z1, z2,..., zN) GF of number of customers present at the queues at service initiation instants at queue i - ¯Vi(z1,z2,...,zN) GF of number of customers present at the queues at service completion instants at queue i The work of this author was supported by the Bernstein Fund for the Promotion of Research and by the Fund for the Promotion of Research at the Technion.Part of this work was done while H. Levy was with AT&T Bell Laboratories.  相似文献   

4.
We consider an open queueing network consisting of two queues with Poisson arrivals and exponential service times and having some overflow capability from the first to the second queue. Each queue is equipped with a finite number of servers and a waiting room with finite or infinite capacity. Arriving customers may be blocked at one of the queues depending on whether all servers and/or waiting positions are occupied. Blocked customers from the first queue can overflow to the second queue according to specific overflow routines. Using a separation method for the balance equations of the two-dimensional server and waiting room demand process, we reduce the dimension of the problem of solving these balance equations substantially. We extend the existing results in the literature in three directions. Firstly, we allow different service rates at the two queues. Secondly, the overflow stream is weighted with a parameter p ∈ [0,1], i.e., an arriving customer who is blocked and overflows, joins the overflow queue with probability p and leaves the system with probability 1 − p. Thirdly, we consider several new blocking and overflow routines. An erratum to this article can be found at  相似文献   

5.
Consider a symmetrical system of n queues served in cyclic order by a single server. It is shown that the stationary number of customers in the system is distributed as the sum of three independent random variables, one being the stationary number of customers in a standard M/G/1 queue. This fact is used to establish an upper bound for the mean waiting time for the case where at most k customers are served at each queue per visit by the server. This approach is also used to rederive the mean waiting times for the cases of exhaustive service, gated service, and serve at most one customer at each queue per visit by the server.  相似文献   

6.
The dual queue consists of two queues, called the primary queue and the secondary queue. There is a single server in the primary queue but the secondary queue has no service facility and only serves as a holding queue for the overloaded primary queue. The dual queue has the additional feature of a priority scheme to help reduce congestion. Two classes of customers, class 1 and 2, arrive to the dual queue as two independent Poisson processes and the single server in the primary queue dispenses an exponentially distributed service time at the rate which is dependent on the customer’s class. The service discipline is preemptive priority with priority given to class 1 over class 2 customers. In this paper, we use matrix-analytic method to construct the infinitesimal generator of the system and also to provide a detailed analysis of the expected waiting time of each class of customers in both queues.  相似文献   

7.
In this paper we consider a single server queue in which arrivals occur according to a Poisson process and each customer's service time is exponentially distributed. The server works according to the gated process-sharing discipline. In this discipline, the server provides service to a batch of at mostm customers at a time. Once a batch of customers begins service, no other waiting customer can receive service until all members of the batch have completed their service. For this queue, we derive performance characteristics, such as waiting time distribution, queue length distribution etc. For this queue, it is possible to obtain the mean conditional response time for a customer whose service time is known. This conditional response time is a nonlinear function (as opposed to the linear case for the ordinary processor-sharing queue). A special case of the queue (wherem=) has an interesting and unusual solution. For this special case, the size of the batch for service is a Markov chain whose steady state distribution can be explicitly written down. Apart from the contribution to the theory of Markov chains and queues, the model may be applicable to scheduling of computer and communication systems.  相似文献   

8.
Tandem queues are widely used in mathematical modeling of random processes describing the operation of manufacturing systems, supply chains, computer and telecommunication networks. Although there exists a lot of publications on tandem queueing systems, analytical research on tandem queues with non-Markovian input is very limited. In this paper, the results of analytical investigation of two-node tandem queue with arbitrary distribution of inter-arrival times are presented. The first station of the tandem is represented by a single-server queue with infinite waiting room. After service at the first station, a customer proceeds to the second station that is described by a single-server queue without a buffer. Service times of a customer at the first and the second server have PH (Phase-type) distributions. A customer, who completes service at the first server and meets a busy second server, is forced to wait at the first server until the second server becomes available. During the waiting period, the first server becomes blocked, i.e., not available for service of customers. We calculate the joint stationary distribution of the system states at the embedded epochs and at arbitrary time. The Laplace–Stieltjes transform of the sojourn time distribution is derived. Key performance measures are calculated and numerical results presented.  相似文献   

9.
10.
Consider a tandem queue model with a single server who can switch instantaneously from one queue to another. Customers arrive according to a Poisson process with rate λ . The amount of service required by each customer at the ith queue is an exponentially distributed random variable with rate μi. Whenever two or more customers are in the system, the decision as to which customer should be served first depends on the optimzation criterion. In this system all server allocation policies in the finite set of work conserving deterministic policies have the same expected first passage times (makespan) to empty the system of customers from any initial state. However, a unique policy maximizes the first passage probability of empty-ing the system before the number of customers exceeds K, for any value of K, and it stochastically minimizes (he number of customers in the system at any time t > 0 . This policy always assigns the server to the non empty queue closest to the exit  相似文献   

11.
In this paper we consider a single-server polling system with switch-over times. We introduce a new service discipline, mixed gated/exhaustive service, that can be used for queues with two types of customers: high and low priority customers. At the beginning of a visit of the server to such a queue, a gate is set behind all customers. High priority customers receive priority in the sense that they are always served before any low priority customers. But high priority customers have a second advantage over low priority customers. Low priority customers are served according to the gated service discipline, i.e. only customers standing in front of the gate are served during this visit. In contrast, high priority customers arriving during the visit period of the queue are allowed to pass the gate and all low priority customers before the gate. We study the cycle time distribution, the waiting time distributions for each customer type, the joint queue length distribution of all priority classes at all queues at polling epochs, and the steady-state marginal queue length distributions for each customer type. Through numerical examples we illustrate that the mixed gated/exhaustive service discipline can significantly decrease waiting times of high priority jobs. In many cases there is a minimal negative impact on the waiting times of low priority customers but, remarkably, it turns out that in polling systems with larger switch-over times there can be even a positive impact on the waiting times of low priority customers.  相似文献   

12.
In this note we consider two queueing systems: a symmetric polling system with gated service at allN queues and with switchover times, and a single-server single-queue model with one arrival stream of ordinary customers andN additional permanently present customers. It is assumed that the combined arrival process at the queues of the polling system coincides with the arrival process of the ordinary customers in the single-queue model, and that the service time and switchover time distributions of the polling model coincide with the service time distributions of the ordinary and permanent customers, respectively, in the single-queue model. A complete equivalence between both models is accomplished by the following queue insertion of arriving customers. In the single-queue model, an arriving ordinary customer occupies with probabilityp i a position at the end of the queue section behind theith permanent customer,i = l, ...,N. In the cyclic polling model, an arriving customer with probabilityp i joins the end of theith queue to be visited by the server, measured from its present position.For the single-queue model we prove that, if two queue insertion distributions {p i, i = l, ...,N} and {q i, i = l, ...,N} are stochastically ordered, then also the workload and queue length distributions in the corresponding two single-queue versions are stochastically ordered. This immediately leads to equivalent stochastic orderings in polling models.Finally, the single-queue model with Poisson arrivals andp 1 = 1 is studied in detail.Part of the research of the first author has been supported by the Esprit BRA project QMIPS.  相似文献   

13.
A two-queue,one-server model with priority for the longer queue   总被引:1,自引:0,他引:1  
Cohen  J. W. 《Queueing Systems》1987,2(3):261-283
The queueing model studied consists of one server and two queues. Each queue has its own Poisson arrival stream and service time distribution. After a service completion, the server proceeds with a customer from the longer queue, if the queues are unequal; if the queues are equal, the server chooses with some probability a customer from one of the queues. The model is of practical interest in performance analysis, but also of theoretical interest because the functional equation to be solved has not yet been studied in the queueing literature. A basic analysis of this functional equation is presented. Some numerical results are given to assess the influence of the present service discipline. Some new properties of L.S. transforms of service time distributions are discussed in the appendix.Dr. T. Katayama has formulated the present problem and brought it to the author's attention during his visit in October/November 1984 to the NTT-Electr. Comm. Lab.'s Musashino, Tokyo 180.  相似文献   

14.
Consider a tandem queue of two single-server stations with only one server for both stations, who may allocate a fraction α of the service capacity to station 1 and 1−α to station 2 when both are busy. A recent paper treats this model under classical Poisson, exponential assumptions.Using work conservation and FIFO, we show that on every sample path (no stochastic assumptions), the waiting time in system of every customer increases with α. For Poisson arrivals and an arbitrary joint distribution of service times of the same customer at each station, we find the average waiting time at each station for α = 0 and α = 1. We extend these results to k ≥ 3 stations, sample paths that allow for server breakdown and repair, and to a tandem arrangement of single-server tandem queues.This revised version was published online in June 2005 with corrected coverdate  相似文献   

15.
Consider two servers of equal service capacity, one serving in a first-come first-served order (FCFS), and the other serving its queue in random order. Customers arrive as a Poisson process and each arriving customer observes the length of the two queues and then chooses to join the queue that minimizes its expected queueing time. Assuming exponentially distributed service times, we numerically compute a Nash equilibrium in this system, and investigate the question of which server attracts the greater share of customers. If customers who arrive to find both queues empty independently choose to join each queue with probability 0.5, then we show that the server with FCFS discipline obtains a slightly greater share of the market. However, if such customers always join the same queue (say of the server with FCFS discipline) then that server attracts the greater share of customers. This research was supported by the Israel Science Foundation grant No. 526/08.  相似文献   

16.
Consider a number of parallel queues, each with an arbitrary capacity and multiple identical exponential servers. The service discipline in each queue is first-come-first-served (FCFS). Customers arrive according to a state-dependent Poisson process. Upon arrival, a customer joins a queue according to a state-dependent policy or leaves the system immediately if it is full. No jockeying among queues is allowed. An incoming customer to a parallel queue has a general patience time dependent on that queue after which he/she must depart from the system immediately. Parallel queues are of two types: type 1, wherein the impatience mechanism acts on the waiting time; or type 2, a single server queue wherein the impatience acts on the sojourn time. We prove a key result, namely, that the state process of the system in the long run converges in distribution to a well-defined Markov process. Closed-form solutions for the probability density function of the virtual waiting time of a queue of type 1 or the offered sojourn time of a queue of type 2 in a given state are derived which are, interestingly, found to depend only on the local state of the queue. The efficacy of the approach is illustrated by some numerical examples.  相似文献   

17.
Queues in which customers request service consisting of an integral number of segments and in which the server moves from service station to service station are of considerable interest to practitioners working on digital communications networks. In this paper, we present insensitivity theorems and thereby equilibrium distributions for two discrete time queueing models in which the server may change from one customer to another after completion of each segment of service. In the first model, exactly one segment of service is provided at each time point whether or not an arrival occurs, while in the second model, at most one arrival or service occurs at each time point. In each model, customers of typet request a service time which consists ofl segments in succession with probabilityb t(l). Examples are given which illustrate the application of the theorems to round robin queues, to queues with a persistent server, and to queues in which server transition probabilities do not depend on the server's previous position. In addition, for models in which the probability that the server moves from one position to another depends only on the distance between the positions, an amalgamation procedure is proposed which gives an insensitive model on a coarse state space even though a queue may not be insensitive on the original state space. A model of Daduna and Schassberger is discussed in this context.This work was supported by the Australian Research Council.  相似文献   

18.
We are interested in queues in which customers of different classes arrive to a service facility, and where performance targets are specified for each class. The manager of such a queue has the task of implementing a queueing discipline that results in the performance targets for all classes being met simultaneously. For the case where the performance targets are specified in terms of ratios of mean waiting times, as long ago as the 1960s, Kleinrock suggested a queueing discipline to ensure that the targets are achieved. He proposed that customers accumulate priority as a linear function of their time in the queue: the higher the urgency of the customer’s class, the greater the rate at which that customer accumulates priority. When the server becomes free, the customer (if any) with the highest accumulated priority at that time point is the one that is selected for service. Kleinrock called such a queue a time-dependent priority queue, but we shall refer to it as the accumulating priority queue. Recognising that the performance of many queues, particularly in the healthcare and human services sectors, is specified in terms of tails of waiting time distributions for customers of different classes, we revisit the accumulating priority queue to derive its waiting time distributions, rather than just the mean waiting times. We believe that some elements of our analysis, particularly the process that we call the maximum priority process, are of mathematical interest in their own right.  相似文献   

19.
We consider a polling model in which a number of queues are served, in cyclic order, by a single server. Each queue has its own distinct Poisson arrival stream, service time, and switchover time (the server's travel time from that queue to the next) distribution. A setup time is incurred if the polled queue has one or more customers present. This is the polling model with State-Dependent service (the SD model). The SD model is inherently complex; hence, it has often been approximated by the much simpler model with State-Independent service (the SI model) in which the server always sets up for a service at the polled queue, regardless of whether it has customers or not. We provide an exact analysis of the SD model and obtain the probability generating function of the joint queue length distribution at a polling epoch, from which the moments of the waiting times at the various queues are obtained. A number of numerical examples are presented, to reveal conditions under which the SD model could perform worse than the corresponding SI model or, alternately, conditions under which the SD model performs better than a corresponding model in which all setup times are zero. We also present expressions for a variant of the SD model, namely, the SD model with a patient server.  相似文献   

20.
This paper is concerned with single server queues having LCFS service discipline. We give a condition to hold an invariance relation between time and customer average queue length distributions in the queues. The relation is a generalization of that in an ordinary GI/M/1 queue. We compare the queue length distributions for different single server queues with finite waiting space under the same arrival process and service requirement distribution of customer and derive invariance relations among them.This research was supported in part by a grant from the Tokyo Metropolitan Government. The latter part of this paper was written while the author resided at the University of California, Berkeley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号