首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A concave function defined on a polytope may have many local minima (in fact every extreme point may be a local minimum). Sufficient conditions are given such that if they are satisfied at a point, this point is known to be a global minimum. It is only required to solve a single linear program to test whether the sufficient conditions are satisfied. This test has been incorporated into an earlier algorithm to give improved performance. Computational results presented show that these sufficient conditions are satisfied for certain types of problems and may substantially reduce the effort needed to find and recognize a global minimum.  相似文献   

2.
In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also obtain necessary global optimality conditions, which are different from the Lagrange multiplier conditions for special classes of quadratic optimization problems. These classes include weighted least squares with ellipsoidal constraints, and quadratic minimization with binary constraints. We discuss examples which demonstrate that our optimality conditions can effectively be used for identifying global minimizers of certain multi-extremal non-convex quadratic optimization problems. The work of Z. Y. Wu was carried out while the author was at the Department of Applied Mathematics, University of New South Wales, Sydney, Australia.  相似文献   

3.
Characterizations of global optimality are given for general difference convex (DC) optimization problems involving convex inequality constraints. These results are obtained in terms of -subdifferentials of the objective and constraint functions and do not require any regularity condition. An extension of Farkas' lemma is obtained for inequality systems involving convex functions and is used to establish necessary and sufficient optimality conditions. As applications, optimality conditions are also given for weakly convex programming problems, convex maximization problems and for fractional programming problems.This paper was presented at the Optimization Miniconference held at the University of Ballarat, Victoria, Australia, on July 14, 1994.  相似文献   

4.
In this paper we consider the standard linear SDP problem, and its low rank nonlinear programming reformulation, based on a Gramian representation of a positive semidefinite matrix. For this nonconvex quadratic problem with quadratic equality constraints, we give necessary and sufficient conditions of global optimality expressed in terms of the Lagrangian function.  相似文献   

5.
In this paper, we present Lagrange multiplier necessary conditions for global optimality that apply to non-convex optimization problems beyond quadratic optimization problems subject to a single quadratic constraint. In particular, we show that our optimality conditions apply to problems where the objective function is the difference of quadratic and convex functions over a quadratic constraint, and to certain class of fractional programming problems. Our necessary conditions become necessary and sufficient conditions for global optimality for quadratic minimization subject to quadratic constraint. As an application, we also obtain global optimality conditions for a class of trust-region problems. Our approach makes use of outer-estimators, and the powerful S-lemma which has played key role in control theory and semidefinite optimization. We discuss numerical examples to illustrate the significance of our optimality conditions. The authors are grateful to the referees for their useful comments which have contributed to the final preparation of the paper.  相似文献   

6.
In this article, we obtain new sufficient optimality conditions for the nonconvex quadratic optimization problems with binary constraints by exploring local optimality conditions. The relation between the optimal solution of the problem and that of its continuous relaxation is further extended.  相似文献   

7.
The sufficient optimality conditions of Zeidan for optimal control problems (Refs. 1 and 2) are generalized such that they are applicable to problems with pure state-variable inequality constraints. We derive conditions which neither assume the concavity of the Hamiltonian nor the quasiconcavity of the constraints. Global as well as local optimality conditions are presented.  相似文献   

8.
In this paper, we are concerned with the linearly constrained global minimization of the sum of a concave function defined on ap-dimensional space and a linear function defined on aq-dimensional space, whereq may be much larger thanp. It is shown that a conical algorithm can be applied in a space of dimensionp + 1 that involves only linear programming subproblems in a space of dimensionp +q + 1. Some computational results are given.This research was accomplished while the second author was a Fellow of the Alexander von Humboldt Foundation, University of Trier, Trier, Germany.  相似文献   

9.
In this article sufficient optimality conditions are established for optimal control problems with pointwise convex control constraints. Here, the control is a function with values in Rn. The constraint is of the form u(x)∈U(x), where U is a set-valued mapping that is assumed to be measurable with convex and closed images. The second-order condition requires coercivity of the Lagrange function on a suitable subspace, which excludes strongly active constraints, together with first-order necessary conditions. It ensures local optimality of a reference function in an L-neighborhood. The analysis is done for a model problem namely the optimal distributed control of the instationary Navier-Stokes equations.  相似文献   

10.
《Optimization》2012,61(3):195-211
We consider generalized semi-infinite programming problems. Second order necessary and sufficient conditionsfor local optimality are given. The conditions are derived under assumptions such that the feasible set can be described by means of a finite number of optimal value functions. Since we do not require a strict complementary condition for the local reduction these functions are only of class C1 A sufficient condition for optimality is proven under much weaker assumptions.  相似文献   

11.
Weakly convex polyhedra which are star-shaped with respect to one of their vertices are infinitesimally rigid. This is a partial answer to the question as to whether every decomposable weakly convex polyhedron is infinitesimally rigid. The proof is based on a recent result of Izmestiev on the geometry of convex caps.  相似文献   

12.
Necessary optimality conditions for bilevel set optimization problems   总被引:1,自引:0,他引:1  
Bilevel programming problems are hierarchical optimization problems where in the upper level problem a function is minimized subject to the graph of the solution set mapping of the lower level problem. In this paper necessary optimality conditions for such problems are derived using the notion of a convexificator by Luc and Jeyakumar. Convexificators are subsets of many other generalized derivatives. Hence, our optimality conditions are stronger than those using e.g., the generalized derivative due to Clarke or Michel-Penot. Using a certain regularity condition Karush-Kuhn-Tucker conditions are obtained.   相似文献   

13.
考虑一类带有双值约束的非凸三次优化问题, 给出了该问题的一个全局最优充分必要条件. 结果改进并推广了一些文献中所给出的全局最优性条件, 同时还通过数值例子来说明所给出的全局最优充要条件是易验证的.  相似文献   

14.
《Optimization》2012,61(3-4):233-251
The purpose of the present paper is to give necessary optimality conditions for weak Pareto minimun, peints of nondifferentiable vector optimization problems vcing generalized definitions of the upper and lower Dini-Hadamard derivatives. We give two different approaches for such definitions, a global one and a componentwise one  相似文献   

15.
Using a general approach which provides sequential optimality conditions for a general convex optimization problem, we derive necessary and sufficient optimality conditions for composed convex optimization problems. Further, we give sequential characterizations for a subgradient of the precomposition of a K-increasing lower semicontinuous convex function with a K-convex and K-epi-closed (continuous) function, where K is a nonempty convex cone. We prove that several results from the literature dealing with sequential characterizations of subgradients are obtained as particular cases of our results. We also improve the above mentioned statements.  相似文献   

16.
We consider the problem of minimizing a convex functionf(x) under Lipschitz constraintsf i (x)0,i=1,...,m. By transforming a system of Lipschitz constraintsf i (x)0,i=l,...,m, into a single constraints of the formh(x)-x20, withh(·) being a closed convex function, we convert the problem into a convex program with an additional reverse convex constraint. Under a regularity assumption, we apply Tuy's method for convex programs with an additional reverse convex constraint to solve the converted problem. By this way, we construct an algorithm which reduces the problem to a sequence of subproblems of minimizing a concave, quadratic, separable function over a polytope. Finally, we show how the algorithm can be used for the decomposition of Lipschitz optimization problems involving relatively few nonconvex variables.  相似文献   

17.
This paper introduces skewed norms, i.e. norms perturbed by a linear function, which are useful for modelling asymmetric distance measures. The Fermat-Weber problem with mixed skewed norms is then considered. Using subdifferential calculus we derive exact conditions for a destination point to be optimal, thereby correcting and completing some recent work on asymmetric distance location problems. Finally the classical dominance theorem is generalized to Fermat-Weber problems with a fixed skewed norm.  相似文献   

18.
We present several equivalent conditions for the Karush–Kuhn–Tucker conditions for weak? compact convex sets. Using them, we extend several existing theorems of the alternative in terms of weak? compact convex sets. Such extensions allow us to express the KKT conditions and hence necessary optimality conditions for more general nonsmooth optimization problems with inequality and equality constraints. Furthermore, several new equivalent optimality conditions for optimization problems with inequality constraints are obtained.  相似文献   

19.
In this paper, we are concerned with a differentiable multiobjective programming problem in topological vector spaces. An alternative theorem for generalized K subconvexlike mappings is given. This permits the establishment of optimality conditions in this context: several generalized Fritz John conditions, in line to those in Hu and Ling [Y. Hu, C. Ling, The generalized optimality conditions of multiobjective programming problem in topological vector space, J. Math. Anal. Appl. 290 (2004) 363-372] are obtained and, in the presence of the generalized Slater's constraint qualification, the Karush-Kuhn-Tucker necessary optimality conditions.  相似文献   

20.
A new class of generalized convex functions, called the functions with pseudoconvex sublevel sets, is defined. They include quasiconvex ones. A complete characterization of these functions is derived. Further, it is shown that a continuous function admits pseudoconvex sublevel sets if and only if it is quasiconvex. Optimality conditions for a minimum of the nonsmooth nonlinear programming problem with inequality, equality and a set constraints are obtained in terms of the lower Hadamard directional derivative. In particular sufficient conditions for a strict global minimum are given where the functions have pseudoconvex sublevel sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号