首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a methodology has been described for the determination of chlorpyrifos pesticide residue in pistachio oil based on a quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation with combined ion mobility spectrometry (IMS). The different parameters that could influence the QuEChERS- IMS for chlorpyrifos analysis were optimized. Under optimum conditions, the linear dynamic range was obtained over 0.4 to 20 μg g?1 with R 2 = 0.997 and precision as relative standard deviation was 7.1%. The limits of detection and quantification were 0.1 and 0.3 μg g?1 of chlorpyrifos, respectively. The recovery results of chlorpyrifos were at an acceptable range (average 78.3–92.3).  相似文献   

2.
Novel experimental methods are described for controlling the levels of dopant or drift gas modifier with piezoelectric actuation. The piezoelectric jetting of 2-butanol, acetone, 4-heptanone and dichloromethane was first optimised by applying a fractional factorial experimental design to the waveform required to actuate the dopants. The concentration of dopant entering a transverse ion mobility cell was dynamically controlled by a series of air flows at the interface between the actuator and the ion source, as well as the droplet injection frequency, as defined by the optimised waveform parameters. The optimisation methodology indicated that dwell time and dwell voltage were the most important factors in controlling the process. The optimised approach was then used to deliver varying levels of candidate dopants; 20.5 to 196.6 μg?m?3 for 2-butanol, 35.4 to 164.3 μg?m?3 for acetone, 17.8 to 58.2 μg?m?3 for 4-heptanone and 27.6 to 270.2 μg?m?3 for dichloromethane. The method enables reactant ion chemistry to be switched in the order of 3 to 5 sec, indicating the potential for introducing multiple dopants at varying concentrations into ion mobility spectrometers. The most volatile material dichloromethane was more difficult to control and the reproducibility and stability of the instrument responses to this compound was not as good as the other less volatile ones. The concept of extending this approach to mixtures and dual use formulations, doping and modification was proposed.  相似文献   

3.
The aim of the work was to develop an analytical procedure able to quantify traces of 13 neonicotinoids and pyrethroids as well as carboxamide in beeswax at low levels (ng g?1) to evaluate the contamination. For this purpose, an efficient sample preparation procedure was developed based on solid–liquid extraction using dispersive diatomaceous earth and acetonitrile. This step was followed by a selective and sensitive analysis based on ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (ESI-MS/MS). This analytical procedure was validated based on International Conference on Harmonization guidelines. The limits of quantification ranged from 1 ng g?1 (thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid and boscalid) to 40 ng g?1 (lambda-cyhalothrin). The method was then successfully applied to 60 samples of beeswax collected in several areas of France. The presence of thiacloprid, boscalid, imidacloprid and deltamethrin in beeswax was confirmed. The most frequently quantified pesticide was boscalid.  相似文献   

4.
Identification and detection of gunshot residue (GSR) is useful in firearm related events and provides important evidence in trials and related cases. At present, methodologies based on the analysis of inorganic particles found in GSR are not amenable to rapid presumptive testing in the field or laboratory settings. An alternative is to target the organic analytes that are vaporized during the firing event and then re-condense on skin and other surfaces, such as clothing. Previous studies have demonstrated that the persistence of organic compounds, such as diphenylamine (DPA), from hand swabs of shooters as detected using commercial ion mobility spectrometry (IMS) instruments was 3–4 h. These same studies indicated that secondary transfer did not occur, which implied that losses of the organic compounds were attributable to absorption into the skin. The goal of this study was to assess the dermal absorption characteristics of organic gunshot residue (OGSR) using IMS. Two studies were conducted. First, a qualitative IMS method was developed for the in vitro analysis of select OGSR compounds. In vitro studies with medical grade silicone were conducted using Franz diffusion cells (FDCs). The results from this study demonstrated that OGSR was dermally absorbed. Second, a semi-quantitative IMS method was developed for an in vitro study of DPA. The skin permeability of DPA (Kp) was experimentally determined to be 2.6?×?10?2 cm/hr, the steady state flux (Jss) was 13 μg cm?2 hr?1, and the lag time was 8.9 h. The results show excellent correlation with the 3–4 h persistence previously reported.  相似文献   

5.
The determination of pesticide residue on agricultural products is increasingly important.Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia.In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering.Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates.Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone.Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface.The limit of detection of acetamiprid was determined to be 0.05 mg/L.In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory.To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface.These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.  相似文献   

6.
This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL?1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg?1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of?≤?20%, respectively, when spiked at a level of 10 μg kg?1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg?1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg?1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg?1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.  相似文献   

7.
Inorganic elements are responsible for essential bodily functions, such as osmotic regulation, cardiac frequency and contractibility, blood clotting and neuromuscular excitability. The determination of inorganic elements in corporeal fluids such as blood, serum, plasma and urine is used as a monitor for a part or the whole organism; their values, then, are compared with reference interval values. In this study, the energy dispersive X-ray fluorescence spectrometry (EDXRF), applying the Fundamental Parameters method, for the determination of inorganic elements in whole blood samples from humans and laboratory animals, was used. Peripheral blood samples were collected and, before coagulation, 100 μL of sample were deposited onto Whatman No. 41 filter paper and dried, using infrared spotlight. The reference interval values for healthy Brazilian population of Na were found to be 1,788–1,826 μg g?1, of Mg 63–75 μg g?1, of P 602–676 μg g?1, of S 1,519–1,718 μg g?1, of Cl 2,743–2,867 μg g?1, of K 1,508–1,630 μg g?1, of Ca 214–228 μg g?1, of Fe 170184 μg g?1, of Cu 4–6 μg g?1 and of Zn 1–3 μg g?1. The reference interval values for golden hamster (Mesocricetus auratus) of Na were found to be 1,714–1,819 μg g?1, Mg 51–79 μg g?1, P 970–1,080 μg g?1, S 1,231–1,739 μg g?1, Cl 2,775–2,865 μg g?1, of K 1,968–2,248 μg g?1, of Ca 209–257 μg g?1, of Fe 145–267 μg g?1, of Cu 4–6 μg g?1 and of Zn 3–5 μg g?1. A comparative study between EDXRF and instrumental neutron activation analysis data was carried out and the results for both techniques are statistically equal (α = 0.05). The results contribute for the establishment of reference interval values for Na, Mg, P, S, Cl, K, Ca, Cu and Zn in the healthy Brazilian population and the referred laboratory animal species.  相似文献   

8.
In Ion Mobility Spectrometry (IMS), the analysis of aqueous samples is impaired by the mandatory removal of water. Before the sample enters the IMS system, the analyte must be extracted from water. For this purpose, the stir bar sorptive extraction (SBSE) method with polydimethylsiloxane (PDMS) as sorbent was chosen for the enrichment of alachlor, lindane and diuron from aqueous samples. Thermal desorption and detection of the analytes were carried out by conventional IMS coupled with an upstream thermal desorption system (TDS). K0-values were determined using optimized instrumental parameters e.g. gas flows, temperatures and shutter grid width. Furthermore, influence of the experimental parameters (e.g. pH, stirring time, sodium chloride) on enrichment degree of the analytes at the PDMS sorbent has been investigated. For calibration, non-linear second-order calibration functions were applied and the formulas for the Limit of Detection and Limit of Quantification were derived. For example, a Limit of Detection of 5 μg kg?1 and Limit of Quantification of 16 μg kg?1 were obtained for lindane.  相似文献   

9.
We report on a fast, simple and accurate method for the determination of proline in urine samples by employing a nanostructured film of conducting polypyrrole for electrochemically controlled solid-phase microextraction, and ion mobility spectrometry (IMS) for detection. This method has the advantages of simple sample preparation and a sensitivity of IMS to proline that is higher than that for other amino acids. The calibration curve is linear in the range of 0.5–60 μg L?1 (4–521 nmol L?1), and the detection limit is 0.2 μg L?1. The electrochemical potentials for uptake and release were optimized. The method was successfully applied to the clean-up and quantitation of trace amounts of proline in urine samples.
Figure
Proline determination by electrochemically controlled solid phase microextraction coupled to ion mobility spectrometry  相似文献   

10.
A simple and sensitive headspace (HS) solid phase microextraction (SPME) coupled with ion mobility spectrometry (IMS) method is presented for analysis of urea in dialysis human serum samples. A dodecylbenzenesulfonate-doped polypyrrole coating was used as a fiber for SPME. The HS-SPME–IMS method exhibits good repeatability (relative standard deviation of 3 % or less), simplicity, and good sensitivity. The influence of various analytical parameters such as pH, ionic strength, extraction time and temperature was investigated and the parameters were optimized. The calibration graph was linear in the range from 5 to 50 μg mL?1, and the detection limit was 2 μg mL?1. The method was applied successfully for determination of urea in human serum and with acceptable recovery (more than 98 %). Finally, a standard addition calibration method was applied to the HS-SPME-IMS method for the analysis of human serum samples before and at the end of dialysis. The proposed method appears to be suitable for the analysis of urea in serum samples as it is not time-consuming and requires only small quantities of the sample without any derivatization process.
Figure
The ion mobility spectrum obtained by HS-SPME–IMS using a PPy fiber under optimum conditions from headspace of 5 mL (A): 2 µg mL-1 of urea solution, (B): non-spiked control serum sample, (C): non-spiked patient 1 serum sample before dialysis, (D) non-spiked patient 1 serum sample at the end of dialysis, (E) spiked patient 1 serum sample at the end of dialysis with 10 µg mL?1 of urea, (F): non-spiked patient 2 serum sample before dialysis, (G): non-spiked patient 2 serum sample at the end of dialysis, (H): spiked patient 2 serum sample at the end of dialysis with 10 µg mL?1 of urea  相似文献   

11.
The present paper describes the validation of ultrasound-assisted emulsification-microextraction method followed by ion mobility spectrometry (IMS) for determination malathion pesticides. Ultrasound radiation was applied for accelerating the emulsification of microliter organic solvent in aqueous solutions and enhancing the microextraction efficiency. This preconcentration step combined with IMS detection provided a precise and accurate method for determination of trace amounts of malathion pesticides. The effect of parameters influencing the extraction efficiency such as sonication time, type of extraction solvent, extraction solvent volume, and salt concentration were investigated and discussed. Under the optimum conditions, enrichment factors was 270 with corresponding LOD of 4 μg/L. Linearity with a coefficient of estimation (r2) were >0.99 in the concentration level range of 6–750 μg/L for extraction of Malathion in water samples. The applicability of the proposed method was evaluated by determination of the residues of the investigated pesticide in rice paddy water gathered from four stations during 60 days after spraying (June 2014), and in storage rice samples in Mazandaran province, Iran.  相似文献   

12.
Honey is a sweet product made by bees using nectar from flowers. Concentrations of Ca, K, Mg, Fe, Zn, Mn, Cu, Pb and Cd were determined in 13 honey samples from the selected regions around the world. Levels of Ca, Mg, Cu, Fe, Zn and Mn were measured using flame atomic absorption spectrometry (FAAS). Potassium concentration was determined via flame photometry. Concentrations of Cd and Pb were determined using the electrothermal technique (ETAAS). It was estimated that the examined samples of honey from Greece, Turkey, Spain, Poland, Mexico, Argentina and Italy were of good quality in terms of metal concentrations (compliant with the norms referring to food products – WHO, Fifty-third Report of the joint FAO/WHO Expert Committee on Food Additives; Technical Report Series 776, Geneva), although the analysed samples were not free of heavy metals. The concentrations of the elements in the honey samples ranged from 2.38 to 9.31 μg · g?1 for Zn, from 3.86 to 35.10 μg · g?1 for Fe, from 0.19 to 21.64 μg · g?1 for Mn, from 49.53 to 1006.90 μg · g?1 for Ca, from 388.25 to 4761.50 μg · g?1 for K and from 0.20 to 1.53 μg · g?1 for Cu and regarding heavy metals from 0.11 to 2.78 μg · g?1 for Pb and from 0.02 to 0.44 μg · g?1 for Cd. According to these results it was found that the concentrations of heavy metals in the honey samples (except for alfalfa honey and eucalyptus honey from Italy) were under the acceptable limits for foods set out by the FAO/WHO. It was confirmed that the application of chemometric tools supports the extraction of significant information from analytical data, even though the availability of samples is not fully sufficient (this problem is often encountered in environmental analyses).  相似文献   

13.
The effects of gamma irradiation (GR) on total phenol, anthocyanin and antioxidant activity were investigated in three different Persian pistachio nuts at doses of 0, 1, 2 and 4 kGy. The antioxidant activity, as determined by FRAP and DPPH methods, revealed a significant increase in the 1–2 kGy dose range. Total phenol content (TPC) revealed a similar pattern or increase in this range. However, when radiation was increased to 4 kGy, TPC in all genotypes decreased. A radiation dose of 1 kGy had no significant effect on anthocyanin content of Kale-Ghouchi (K) and Akbari (A) genotypes, while it significantly increased the anthocyanin content in the Ghazvini (G) genotype. In addition, increasing the radiation to 4 kGy significantly increased the anthocyanin content of K and G genotypes. To conclude, irradiation could increase the phenolic content, anthocyanin and antioxidant activity of pistachio nuts.  相似文献   

14.
The objective of this study was to set up a method to detect five compounds in fresh smashed apples by HPLC/DAD simultaneously. Different methods have been tested to control browning and ascorbic acid with ultrasonication was adopted. Methanol–water–acetic acid (30:69:1, v/v) containing 2.0 g of ascorbic acid L?1 was chosen as the extract solvent. The method effectively simplified the sample treatment compared with the traditional ways. And primarily, the results were used to identify between different varieties. The chromatographic separation was performed on an Atlantis C18 (250 mm × 4.5 mm, particle size 5 μm) with a gradient elution program using a mixture of acetonitrile and 2% aqueous acetic acid (v/v) as mobile phase within 20 min at 270 nm wavelength. The variation of the content of five compounds was gallic acid (ND ~1.81 μg g?1), protocatechuic acid (ND ~1.79 μg g?1), chlorogenic acid (13.81–189.4 μg g?1), caffeic acid (6.82–45.02 μg g?1) and rutin (0.96–18.55 μg g?1). The results could successfully be used to discriminate between different apple varieties (Gala, Fuji, Delicious, 8th Apple US, Golden Apple, Green Apple and Red Rose); chlorogenic acid and rutin being the polyphenols that contribute most to the differentiation.  相似文献   

15.
This study describe an analytical method employing gas chromatography (GC) using flame photometric detection that has been developed for the simultaneous determination of organophosphate pesticides (diazinon, disulfoton, parathion, chlorpyrifos and malathion) in strawberry samples. For this purpose, molecularly imprinted solid-phase extraction was applied as a sample preparation technique. The method was linear in the ranges from 0.10 to 1.00?μg?g?1, for diazinon, disulfoton, parathion and chlorpyrifos, and 0.10 to 2.00?μg?g?1 for malathion with r?>?0.99. The detection limits (LD) ranged from 0.02 to 0.05?μg?g?1. Recovery studies yielded average recoveries in the range of 65.25 to 87.70?%. These results showed the potential of this technique for organophosphate residue monitoring in strawberry samples.  相似文献   

16.
The validation of a multi-residue method for the determination of five neonicotinoid insecticides (imidacloprid, clothianidin, acetamiprid, thiacloprid and thiamethoxam) in honeybees is described. The method involves the extraction of pesticides using acetonitrile and liquid partitioning with n-hexane. One clean-up is then performed on a florisil cartridge (1?g, 6?mL) and the extract is analysed by liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS). The recovery data were obtained by spiking honeybees samples free of pesticides at two concentration levels of the various neonicotinoids. The recoveries were in the range between 93.3 and 104.0% with relative standard deviation (RSD) less than 20%. The limit of quantification (LOQ) was 0.5?ng?g?1 (corresponding to 0.05?ng?bee?1) for all pesticides except for acetamiprid which was 1?ng?g?1 (corresponding to 0.1?ng?bee?1).  相似文献   

17.
Dichlorodiphenyl trichloroethane (DDT) as an organochlorine compound has been globally used as a pesticide for controlling soil-dwelling insects and treating diseases such as malaria and typhus. The degradation products of DDT and its metabolites have also negative effects on the environment. The present study has investigated the determination of DDT and its metabolites in water sample using ion mobility spectrometry (IMS) as a rapid and sensitive detection technique. For this purpose, DDT and its metabolites were extracted using reverse phase solid-phase extraction (SPE) from water samples. The samples were then recovered by eluting with methanol and finally, quantified using the corona discharge IMS technique. Injection and oven temperatures and the effect of dopant were optimized as experimental parameters influencing both detection and determination efficiencies. Degradation of DDT in IMS drift tube was studied and reduced mobility values of DDT and its metabolites were calculated. The developed method was validated using water sample to obtain good results for the determination of DDT at low levels (1 ng ml?1) while spiked recoveries were obtained to be between 95.0–96.7%. The proposed method based on IMS proved to be a simple, inexpensive, rapid and sensitive procedure for the fast monitoring and determination of DDT and its main metabolites in water sample.  相似文献   

18.
There is an increasing need to address the potential risks arising from combined exposures to multiple residues from pesticides in the diet. Pesticide residue-related pollution is a problem that arises because of the increased use of pesticides in agriculture to meet the growing demands of food production. In this study, pesticide residue data were obtained based on an optimized extraction method. For this purpose, we established a method based on qu ick, e asy, ch eap, e ffective, r ugged, and s afe (QuEChERS) extraction for simultaneous determination of imidacloprid (IMI) and acetamiprid (ACT) in pistachio nuts. The parameters influencing the QuEChERS method were the sample-to-water ratio and adsorbent amounts. As a result, both were optimized to improve the recovery of the analytes as well as the clean-up efficiency of the pistachio matrix. Our results indicated that a freeze-out step and use of primary and secondary amines as an adsorbent led to much cleaner chromatograms with lower baseline drift, without using graphitized carbon black and C18-based adsorbent, which reduced both cost and time of analysis. Following extraction, the pesticide residues were separated and quantified by reverse-phase HPLC. For validation purposes, recovery studies were carried out using a concentration range from 20 to 2500 μg/L at nine levels. The suitable linearity, precision, and accuracy were obtained with HPLC–UV with recoveries of 70.37%–89.80% for IMI and 81.05%–113.57% for ACT, with relative standard deviations <12%. The validated method was successfully applied to the analysis of pistachio samples collected from a field trial to estimate maximum residue limits. There was no significant health risk for consumers via pistachio consumption.  相似文献   

19.
A simple, sensitive, fast and efficient method based on dispersive liquid–liquid microextraction (DLLME) followed by ion mobility spectrometry (IMS) has been proposed for preconcentration and trace detection of carbamazepine (CBZ) in formulation samples. In this method, 1 mL of methanol (disperser solvent) containing 80 μL of chloroform (extraction solvent) was rapidly injected by a syringe into a sample. After 5 min centrifugation, the preconcentrated carbamazepine in the organic phase was determined by IMS. Development of DLLME procedure includes optimization of parameters influencing the extraction efficiencies such as kind and volume of extraction solvent, disperser solvent and salt addition, centrifugation time and pH of the sample solution. The proposed method presented good linearity in the range of 0.05–10 μg mL?1 and the detection limit was 0.025 μg mL?1. The repeatability of the method expressed as relative standard deviation was 6 % (n = 5). This method has been applied to the analysis of carbamazepine formulation samples with satisfactory relative recoveries ≤75 %.  相似文献   

20.
The study summarizes radiological characteristics of Banduhurang open cast mine which includes qualitative and quantitative behavior of 222Rn concentration, external gamma radiation level over the mine pit as well as in its adjoining environment, long-lived alpha (LLα) activity concentration associated with the respirable size of ore dust and assessment of dose to the mine workers in 2006–2008. The investigations reveal that geometric means (χg) of measured radon concentration were 36.39, 38.69, 26.64 and 24 Bq m?3 with respective geometric standard deviations (σg) were 1.52, 1.55, 1.36 and 1.68 Bq m?3 and χg of gamma absorbed dose rates were 0.54, 0.64, 0. 45 and 0.15 μGy h?1 with respective σg were 1.63, 1.53, 1.52 and 1.72 μGy h?1 over the mine pit, ore yard, waste yard and in the surrounding environment within a 10 km radius to the mine, respectively. The χg of LLα activity was observed to be 16 mBq m?3 with σg of 1.9 mBq m?3. The annual mean effective dose equivalent received by the member radiation workers of Banduhurang mine was estimated to 1.41 mSv y?1, which is about 7% of the prescribed dose limits of 20 mSv y?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号