首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new finite volume scheme to efficiently simulate gravity currents flowing over complex surfaces. The two‐dimensional shallow‐water equations, with terms to account for friction and particle transport, are solved using a non‐oscillatory technique. By applying a form drag at the front or head of the dense current, the scheme also implicitly captures the correct Froude number condition at the moving front as it intrudes into the less dense ambient fluid. The Froude number of the head region predicted by the numerical simulation is in good agreement with experimental results for a homogeneous current over a horizontal surface if a realistic profile drag coefficient is chosen. This new scheme avoids the development complexities of a general front‐tracking scheme (e.g., handling merging fronts and multiple currents) and the computational cost of solving the full three‐dimensional Euler equations while providing a fast, accurate simulation of gravity currents. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Turbulent drag reduction in dam-break flows   总被引:2,自引:0,他引:2  
The role of turbulence is investigated in dam-break flows, where a finite volume of fluid is released from a compartment into a long, rectangular channel. After a sudden removal of the lock gate, a gravity current, undular bore, or solitary wave develops, depending on the ambient fluid height in the channel. The temporal evolution of the moving front has been measured and evaluated. It was observed that the dilution using a very small amount (a few weight ppm) of a long chain polymer (polyethylene-oxide) in the fluid strongly affected flow properties. Pronounced drag reduction has been found in dry bed flows (whereas the polymer increased the viscosity of the fluid). The presence of a few mm-thick ambient fluid layer in the channel effectively destroyed drag reduction, in spite of the fact that strong turbulence was obvious and the propagation velocity of the front was almost unchanged.  相似文献   

3.
Attempts to understand human movement systems from the perspective of nonlinear dynamics have increased in recent years, although research has almost exclusively focused on modeling rhythmical movements as limit cycle oscillators. Only a limited amount of work has been undertaken on discrete movements, generally only in the form of numerical simulations and mathematical models. In this paper we briefly overview the key findings from previous research on movement systems as nonlinear dynamical systems, and report data from a behavioral experiment on the coordination observed in a prehension movement under both discrete and rhythmical conditions. In a rhythmical condition subjects grasped dowels in time to a metronomic beat, whereas in a discrete condition a target dowel was grasped within a predetermined movement time. A scanning procedure was implemented to monitor changes in the time of relative final hand closure during hand transport to the dowel. For each condition, a pre-test and post-test of 10 trials were also conducted either side of the scanning trial block. No effects between condition or trial block were noted and there was a large amount of within-subject variability in the coordination data. The findings support previous theoretical modeling suggesting that subject intentionality acts as a more powerful constraint on the intrinsic dynamics of the movement system in discrete compared to rhythmical conditions. The high levels of individual variability were interpreted as being due to the competition between specific and non-specific control parameters (e.g., the subject's intentionality and the metronomic beat). It is concluded that discrete prehension movements appear amenable to a nonlinear dynamical analysis. The data also point to the innovative use of within-subject analyses in future work modeling motor systems as nonlinear dynamical systems.  相似文献   

4.
Results have been obtained in recent years which make it possible to get an idea of the optimal shape of a three-dimensional body at high supersonic speeds. It has been shown [1–6] that bodies with a cross section in the form of a star with certain limitations have the least wave drag and remain optimal with respect to total drag with approximate account for the friction forces. The transition from the optimal body of revolution to the star-shaped body of equivalent volume and length makes a several-fold drag reduction. These theoretical results, initially obtained on the basis of the Newton drag law, were then confirmed by the exact solution [7] for bodies which were close in form to the optimal. Subsequent experimental studies investigated the flow pattern between two lobes representing an element of the star over a wide range of included angles. The experiments showed that there actually exists a flow between the rays corresponding to the solution [7], that this flow is stable, and that the wave drag calculated from the pressure distribution over the body surface is several fold less than for the equivalent cone. Although these results are encouraging, they do not prove the advantages of the star-shaped form for practical use. The point is that the star has considerably more wetted area; therefore the effect of the marked reduction of the wave drag may be compensated by an increase of the friction drag. The references above to the theory which considers friction are not convincing, since the friction estimates are approximate, while real friction is complicated by the presence of shock waves within the flow, the possibility of a turbulent boundary layer, separation, etc. Not all these factors are amenable to calculation, and it is clear that conclusions can be drawn on star drag only after making direct measurements of the total force acting on a model in a flow.In the following we describe the results of force tests conducted with a star model at M6 and 8. During the tests the flow pattern in the wake behind the body was photographed in addition to the force measurements.The authors wish to thank G. I. Petrov, G. G. Chernyi, M. Ya. Yudelovich, and A. A. Churilin for assistance in carrying out the experimentation.  相似文献   

5.
We use an approach based on invasion percolation in a gradient (IPG) to describe the displacement patterns that develop when a fluid spreads on an impermeable boundary in a porous medium under the influence of gravity (buoyancy) forces in a drainage process. The approach is intended to simulate applications, such as the spreading of a DNAPL in the saturated zone and of a NAPL in the vadose zone on top of an impermeable layer, or the classical problems of gravity underruning and gravity override in reservoir engineering. As gravity acts in a direction transverse to the main displacement direction, a novel form of IPG develops. We study numerically the resulting patterns for a combination of transverse and parallel Bond numbers and interpret the results using the concepts of gradient percolation. A physical interpretation in terms of the capillary number, the viscosity ratio and the gravity Bond number is also provided. In particular, we consider the scaling of the thickness of the spreading gravity tongue, for the cases of gravitydominated and viscousunstable displacements, and of the propagating front in the case of stabilized displacement at relatively high rates. It is found that the patterns have percolation (namely fractallike) characteristics, which cannot be captured by conventional continuum equations. These characteristics will affect, for example, mass transfer and must be considered in the design of remediation processes.  相似文献   

6.
The stability of a flame front in a combustible gas mixture flow is investigated. The flame is treated as a gasdynamic discontinuity, the gas is assumed to be dynamically incompressible, and the gravity force is neglected. It is assumed that in the undisturbed state the free-stream velocity component u , tangential to the front, is nonzero and can vary along the front; the normal mixture-velocity component u n is constant along the front. A criterion distinguishing the absolute and convective instability of a skew flame front on which u =const is formulated. It is shown that the condition of instability of an inhomogeneous front on which the tangential component u (x) varies slowly coincides with the condition of absolute instability of a homogeneous front on which u is constant and equal to the u (x) minimum.  相似文献   

7.
Previous theoretical results on geothermal two-phase flows in porous media are extended and applied to the case of withdrawal of fluid at a constant rate from a vertical column. Dimensional considerations show that pressure and saturation behaviour is controlled by a single parameter which is the ratio of the withdrawal speed to buoyancy speed. For large flows (large) fluid withdrawal is a mining process, and a vapour dominated zone spreads out from the production level. Production enthalpies tend towards steam values. However if is small then gravity dominates, and buoyancy forces can lead to the formation of a steam bubble which escapes from the production boundary and rises towards the surface. Production enthalpy may then remain at the liquid value over long periods. In addition certain saturation ranges at the sink may be forbidden as a consequence of the constant rate boundary condition. Then saturation shocks will form at the production boundary and travel out from the sink. Internally generated shocks may also occur. Pressure and saturation response to a steady withdrawal of fluid is more complicated than in a two-phase gravity-free situation. Since gravity is an essential component of even horizontal two-phase flow this suggests that two-phase studies which ignore the role of gravity may be too simplistic.  相似文献   

8.
The shape of long, trailing cavities behind three-dimensional headforms is discussed. The case of a flat elliptic wing is specifically treated. Three distinct shape regimes are found: quasi-planar, long-flat, spheroidal. These appear in successively higher speed ranges (lower cavitation numbers, ). It is argued that the cavities may be replaced by surrogates in the form of slender ellipsoids. The pressures on these are almost constant and correspond to a cavitation number equal to twice their longitudinal added mass coefficient, k1. A heuristic theory based on kinetic energy fields is given, relating k1 to the product of headform drag and cavity length. This theory correlates with an exact theory in the same form given by Garabedian for axi-symmetric cones and also with its extension to planar flows. Results are given here for the shape of the cavity behind an elliptic wing of any aspect ratio, given drag, and cavitation number. Specific formulae are given in the form, = f (CD/AR), for the transition between the quasi-planar and long-flat regime, and the long-flat and spheroidal regime.  相似文献   

9.
An experimental and theoretical investigation has been made of nonsteady heat transfer between a shield and a hot turbulent jet impinging normally on it. A system of dimensionless parameters is found for simulating the nonsteady interaction of high-temperature jets with shields. A system of thermocouples was used to measure the spatial and temporal distributions of the temperature in a gas above a shield, and also on the surface and within the shield. A numerical investigation was made of the nonsteady heat transfer in a shield with boundary condition specified in the form of the experimental temperature distribution of the front surface of the shield and with allowance for convective and radiative loss of heat from the other surfaces of the shield. The obtained solution is used to find the characteristics of nonsteady heat transfer (the coefficient of heat transfer and the Stanton number) on the front surface of the shield. These characteristics are used to solve the problem of periodic exposure of a shield to a heat flow produced by the switching on of a high-temperature jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 130–138, March–April, 1979.  相似文献   

10.
We consider a general model of transient flow in media of random conductivity and storativity. The flow is driven by the spatially distributed source function (x, t) and the initial head distribution h 0(x). The function models sources and wells and can be deterministic, random or a sum of both. The deterministic source function corresponds to singularities of deterministic strength, whereas the random models the head boundary condition. In the latter case, is shown to be proportional to the hydraulic conductivity. The aim of the study is to analyze the feasibility of averaging the flow equations and of developing the mathematical model of average flow (AFM) without solving problems in detail. It is shown that the problem of averaging is reduced to deriving two constitutive equations. The first equation, the effective Darcy's law (EDL) stems from averaging Darcy's law at local scale. The second one is related to the medium ability to store a fluid and expresses the correlation between the storativity and head in terms of the mean head. Both relationships are required to be completely determined by the medium structure (conductivity and storativity statistical properties) and independent of the flow configuration (functions and h 0). We show that if one of the constitutive equations exists, the same is true respective to the second. This reduces the problem of averaging to the classic one of deriving the EDL. For steady flows the EDL is shown to exist for flows driven by sources (wells) of either deterministic flux or head boundary conditions. No EDL can be derived if both types of sources are present in the flow domain. For unsteady flows the EDL does not exist if the initial head correlates with the medium properties. For uncorrelated initial head distribution, its random residual (due to the measurement errors and scarcity of the data) has no impact on the EDL and is immaterial. For deterministic h 0, the only case for which the EDL exists is the flow by sources of deterministic discharge. For sources of given head boundary condition the EDL can be derived only for uniform initial head distribution. For all other cases, the EDL does not exist. The results of the study are not limited by usually adopted assumptions of weak heterogeneity and of stationarity of the formation random properties.  相似文献   

11.
We study gas motion behind the front of a cylindrical shock wave created by the motion of a piston in a gravitating medium. The problem is self-similar, but the solution cannot be obtained in closed form. A numerical calculation is made for various Mach numbers. The calculation shows that the central part of the configuration is displaced a definite distance from the axis of symmetry.Cylindrical shock waves through a compressible homogeneous medium in a gravity field have been examined by Sedov [1] and Lin [2], However, these studies contain the essential assumption that the total energy (i. e., the sum of the kinetic and thermal energies) within the region bounded by the expanding shock wave is independent of time.In the following we extend the previous studies to the case of shock waves in nonhomogenous media, which propagate in the fluctuating gravity field created by the disturbed mass itself. The shock wave is created by the motion of a piston whose velocity varies as some power of the time, i. e., v. The total energy of the configuration also depends on the time.The authors wish to thank M. P. Murgai for cooperation and assistance and C. D. Ghildyal for valuable advice, as well as L. I. Sedov and G. I. Petrov for their critical comments.  相似文献   

12.
Wetting-front movement can be impaired whenever the flow region includes boundaries such as the soil surface, seepage faces, planes of symmetry, or actual layers that are effectively impermeable, such as heavy clays or coarse materials below the water-entry pressure. An approximate analytical solution for interaction of flow from a line source with a parallel plane, impervious layer is derived. The solution ignores gravity and assumes a particular diffusivity that is related to the constant flow rate. It is exact until interaction begins, and provides an accurate approximation for short times thereafter. It can therefore be used to test the accuracy of numerical solutions of the flow equation, which can then be used with confidence for later times when the analytical approximation breaks down, for instance because gravity is ignored. A finite difference solution was tested in this way for both gradual and steep wetting fronts. Agreement between the two solutions was excellent for the gradual front, with the analytical approximation only slightly in error at later times. Numerical errors at the steep front were much greater; an accurate solution needed a finer spatial grid and a restart from the exact analytical values at the beginning of the interaction. The analytical approximation, though not as accurate as for the gradual front, was still good.  相似文献   

13.
The results are given of a theoretical and experimental investigation into supersonic flow over bodies with star-shaped transverse section and flat faces having an equivalent circular cone of elongation 1.3 as a function of the number of petals of the star-shaped body and the interior radius at its midsection. Data are given on the coefficient of wave drag of such bodies, and the total drag calculated using a semiempirical theory is compared with the results of weight measurements.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 34–40, May–June, 1982.  相似文献   

14.
The θ‐method is a popular semi‐implicit finite‐difference method for simulating free‐surface flows. Problem stiffness, arising because of the presence of both fast and slow timescale processes, is easily handled by the θ‐method. In most ocean, coastal, and estuary modeling applications, stiffness is caused by fast surface gravity wave timescales imposed on slower timescales of baroclinic variability. The method is well known to be unconditionally stable for shallow water (hydrostatic) models when , where θ is the implicitness parameter. In this paper, we demonstrate that the method is also unconditionally stable for nonhydrostatic models, when for both pressure projection and pressure correction methods. However, the methods result in artificial damping of the barotropic mode. In addition to investigating stability, we also estimate the form of artificial damping induced by both the free surface and nonhydrostatic pressure solution methods. Finally, this analysis may be used to estimate the damping or growth associated with a particular wavenumber and the overall order of accuracy of the discretization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Tests conducted on a model Busemann biplane catamaran in a towing basin qualitatively showed that the form of the wave drag coefficient curve followed the typical drag curve for a single unswept supersonic wing, but on this was superimposed that of the Busemann wave drag curve (giving a local minimum near the design Froude number).  相似文献   

16.
17.
The onedimensional problem of the propagation of a perturbation front from a point instantaneous source for transport processes with spatial–temporal nonlocality is considered. A class of nonlocality kernels with a singularity of the form t–1 for small times is used. The front propagation speed v is calculated and an expression for perturbations in the vicinity of the front is derived in the form of an asymptotic series in powers of the parameter = t – xv–1.  相似文献   

18.
Dynamic force balances for short-duration hypersonic testing facilities   总被引:1,自引:0,他引:1  
Two force balance techniques for use in hypersonic impulse facilities are compared by measuring the drag force on a 30° semi-apex-angle blunt cone model in a hypersonic shock tunnel at a free stream Mach number of 5.75. An accelerometer-based balance and a stress-wave force balance were tested simultaneously on the same model to measure the drag force. It was found that drag force measurements could be made using both techniques in a flow with a 450-s test period. The measured drag forces compared well with the theoretical values estimated using Newtonian theory.  相似文献   

19.
The variational problem of the form of bodies with minimum drag for given lift force, volume, and other constraints in general leads to a second-order partial differential equation even for the simplest methods of drag calculation (Newton law and averaged friction coefficient). The solution of this equation is not justified; in its place an approximate solution is suggested which consists of: a) selection of a scheme characterized by certain parameters which are determined from the solution of the extremal problem, b) determination of the optimal surface form for the selected scheme with the aid of the system of ordinary Euler equations. This paper presents a comparison of the body schemes with minimum drag and maximum L/D and presents the solution of several variational problems.At the present time we have quite complete information on the form of minimum-drag bodies for zero lift (nonlifting bodies), and both approximate and quite rigorous methods are known for solving the corresponding variational problems. This cannot be said at all of the form of lifting bodies, for which the requirements are numerous, differing essentially for vehicles of different application, and are generally not limited to a single flight regime. Account for all the mandatory requirements in solving the variational problems is not possible; therefore in the majority of cases these solutions do not yield answers which are directly suitable in practice; rather they yield limiting estimates.The natural tendency to utilize for lifting bodies the axisymmetric form which is customary for nonlifting bodies leads to the study of axisymmetric bodies at angle of attack, axisymmetric bodies with skewed base, sections of axisymmetric bodies cut by planes, etc. In order to obtain a broader view of the optimum forms of lifting bodies we must, obviously, drop the limitation to axisymmetric bodies and bodies with similar cross sections. However, in the case of an arbitrary extremal surface the Euler equation is a second-order partial differential equation, and its simple solution is difficult. In practice it seems wise to solve those variational problems whose Euler equation may be reduced to a system of ordinary differential equations. Therefore, we propose the following method for selecting the optimum forms: a) we select a scheme, a form, which is formed by a set of planes and cylindrical, conical, spherical surfaces and which is defined by parameters that are found from the solution of the extremal problem; b) for the selected scheme the generators of the scheme surface are found from the solution of the variational problem.For the calculation of the air pressure on the body surface we use the empirical Newton law, which yields in the majority of cases results which are very close to the results of the more rigorous methods.It is assumed that the pressure may vanish only at the trailing edge of the body. The frictional drag coefficient, averaged over the body surface, is assumed to be independent of the body shape. In the case of a body of simple form the hottest portion is the frontal portion and account for the thermal protection requirements reduces to the selection of suitable dimensions of this portion of the body. In the general case the problem is stated as follows: find the form of the minimum-drag body for a given lift force, volume, length, and other conditions. To the particular case of the body with maximum L/D corresponds the value of the Lagrange multiplier =–1/k.All the results of calculations presented in the paper are intended only to illustrate the method. After the present paper was submitted for publication, another study [3] appeared which also proposes a method for determining the optimal parameters.  相似文献   

20.
Crack fronts play a fundamental role in engineering models for fracture: they are the location of both crack growth and the energy dissipation due to growth. However, there has not been a rigorous mathematical definition of crack front, nor rigorous mathematical analysis predicting fracture paths using these fronts as the location of growth and dissipation. Here, we give a natural weak definition of crack front and front speed, and consider models of crack growth in which the energy dissipation is a function of the front speed, that is, the dissipation rate at time t is of the form
where F(t) is the front at time t and v is the front speed. We show how this dissipation can be used within existing models of quasi-static fracture, as well as in the new dissipation functionals of Mielke–Ortiz. An example of a constrained problem for which there is existence is shown, but in general, if there are no constraints or other energy penalties, this dissipation must be relaxed. We prove a general relaxation formula that gives the surprising result that the effective dissipation is always rate-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号