首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion of a ring vortex is investigated in the present paper with allowance for the influence of the initial radius of the toroidal vorticity distribution on the flow structure. The statement of the problem in such a formulation makes it possible to classify and reinterpret results obtained previously. A vortex pair is studied together with a vortex ring. The toroidal vorticity and stream function distributions are obtained analytically. The self-induced lift velocity of the ring vortex is found. The influence of inertial terms is investigated numerically.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 10–15, November–December, 1987.  相似文献   

2.
A model for describing the vertically averaged vortex motions of an incompressible viscous fluid with an arbitrary vertical structure of the bottom Ekman boundary layer is proposed. An approach similar to that adopted in [1] is used: the second moments of the deviations from the average velocities required in order to close the vorticity equation are calculated by means of the Ekman solution for gradient flows, which makes it possible to take the integral bottom boundary layer effect into account. As a result, these terms lead to a specific form of nonlinear friction with a coefficient that depends on the vorticity of the average flow. In the particular case of a constant vertical turbulent transfer coefficient the inaccuracies of the model described in [1] can be eliminated. The generalized vorticity equation obtained has solutions of the vorticity spot type with a uniform internal vorticity distribution, which can be effectively investigated by means of appropriate algorithms [2]. The mechanism of entrainment at the vorticity front is illustrated with reference to the example of the evolution of vorticity spots. An exact solution of the problem of the evolution of an elliptic vortex (generalized Kirchhoff vortex), which in the case of fairly strong anticyclonic vorticity degenerates first into a line segment (vortex sheet) and then into a point vortex, is constructed. Equations describing the dynamics of an elliptic vorticity spot in an external field with a linear dependence of the velocity on the horizontal coordinates and generalizing the classical Chaplygin-Kida model [3, 4] are constructed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 49–56, November–December, 1992.  相似文献   

3.
The instability of barrel-shaped vibrations of a vortex ring in an ideal fluid is investigated. These vibrations, stable for a vortex ring with a piecewise-uniform vorticity profile, appear to be unstable for a vortex ring with a smooth vorticity profile. The instability growth rate is found on the basis of the energy balance equation determining the energy transport from perturbations with negative energy in the critical layer to perturbations with positive energy in the rest of the flow. The curvature of the vortex ring, by virtue of which the perturbations with energies of different signs appear to be connected, plays a prominent role in the mechanism under consideration.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 72–78, November–December, 1995.  相似文献   

4.
An analysis of the sound produced when a line vortex interacts at low Mach number with forward or backward facing steps is made. The radiation is dominated by an aeroacoustic dipole whose strength is equal to the unsteady drag on the step. The drag is determined by the vorticity distribution, and a correct estimate of the sound must therefore include contributions from vorticity in the separated flow induced by the vortex. The separation is modelled by assuming that the shed vorticity rolls up into a concentrated core, fed by a connecting sheet from the edge of the step of negligible circulation. The motion everywhere is irrotational except at the impinging vortex and the separation core, and the trajectory of the core is governed by an emended Brown & Michael equation. For large steps it is found that estimates of the generated sound that neglect separation are typically an order of magnitude too large. The sound levels predicted for small steps with and without separation are of comparable magnitudes, although the respectivephasesare different.Turbulentflow over a step frequently involves separation and large surface pressure fluctuations at reattachment zones. The results of this paper suggest that numerical schemes for determining the noise generated by turbulent flow over a step must take proper account of “forcing” of the separation region by the impinging turbulence and of vorticity production via the no-slip condition.  相似文献   

5.
A solution of the self-similar type, describing the development with time of a plane vortex flow excited by an axisymmetric mass source (sink) in a rotating viscous fluid, is obtained. Sources of two kinds — impulsive and of constant strength — are considered. The solutions for the velocity and vorticity fields are expressed in the form of functions similar to incomplete gamma functions and are presented in the form of graphs for various flow Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 172–175, July–August, 1991.  相似文献   

6.
Motivated by the unsteady force generation of flying animals, vortex formation and vorticity transport processes around small aspect-ratio translating and rotating plates with a high angle of attack are investigated. Defocusing Digital Particle Image Velocimetry was employed to explore the structure and dynamics of the vortex generated by the plates. For both translating and rotating cases, we observe the presence of a spanwise flow over the plate and the consequent effect of vorticity transport due to the tilting of the leading-edge vortex. While the spanwise flow is confined inside the leading-edge vortex for the translating case, it is widely present over the plate and the wake region of the rotating case. The distribution of the spanwise flow is a prominent distinction between the vortex structures of these two cases. As the Reynolds number decreases, due to the increase in viscosity, the leading-edge and tip vortices tend to spread inside the area swept by the rotating plate. The different vorticity distributions of the low and high Reynolds number cases are consistent with the difference in measured lift forces, which is confirmed using the vorticity moment theory.  相似文献   

7.
Taking advantage of dispersive effects – which supposes a flow extended in the whole space – a sluggish convergence of the solutions of the Boussinesq equations to a solution of the quasigeostrophic system, when the Rossby number tends to zero, can be proved under weaker assumptions on the initial data than usual. In particular, no assumption of well-preparedness is needed. Two examples are given, both involving fields with striated potential vorticity. A result of convergence to a vortex patch is deduced from one of them.  相似文献   

8.
Steady-state solutions to the problem of a thin vortex ring in an inviscid incompressible fluid in infinite space are investigated. The Fraenkel procedure is used to construct the steady-state solutions. In this procedure a given vorticity distribution in plane flow with circular streamlines is transformed into a steady vortex ring using an expansion in the ring thinness parameter. For example, a two-dimensional vortex of constant vorticity is transformed into a steady vortex ring with the uniform distribution in which the absolute value of vorticity is proportional to the distance from the axis of symmetry. The principal aim of our study is to construct the algorithm of finding the flow for an isochronous vortex ring in which the periods of revolution are the same for all the liquid particles in the vortex core. The problem is that the two-dimensional distribution which goes over in the isochronous ring in accordance with the Fraenkel procedure is unknown in advance. In particular, the ring with the uniform distribution is not isochronous despite the isochronism of the initial two-dimensional flow. In this connection the Fraenkel procedure is significantly modified so that the initial two-dimensional vorticity distribution is determined in each of the steps of the iteration procedure. The solution for the vortex ring with the uniform distribution obtained in the present study is significantly used to construct the isochronous solution. The necessary corrections to the former solution are calculated in each step. Obtaining of the isochronous flow is the key step for the investigation of stability of three-dimensional oscillations of the vortex ring since the oscillation spectrum of this flow is discrete.  相似文献   

9.
V. M. Bykov 《Fluid Dynamics》1981,16(6):812-817
Flows with constant vorticity are widely used as local models of more complicated flows [1]. In many cases, such flows are stable against finite two-dimensional perturbations. In particular, the inviscid plane-parallel Couette flow has the property of nonlinear stability. Similar treatment of a class of axisymmetric flows yields nonlinear stability of a spherical Hill vortex and inviscid Poiseuille flow in a circular tube with respect to axisymmetric perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 16–21, October–December, 1981.  相似文献   

10.
The nonlinear problem of boundary layer instability under the influence of a plane vortex is investigated for high Reynolds numbers. The vortex occupies the entire thickness of the boundary layer and has a longitudinal dimension of the order of the Tollmien-Schlichting wavelength. The initial vortex is rapidly swept away by the flow, inducing a Stokes layer near the surface of the plate. Expanding, this layer reaches the dimensions of the viscous sublayer of free interaction theory, where wave packet generation takes place. In the case in question a feature of the nonlinear stage of development of the disturbances is the formation of a concentrated vortex, which arises in the Stokes layer and grows rapidly, whereas the wave packet propagated ahead of it remains linear. From the calculations there emerges a tendency for the new vortex to be formed above the wail, whereas the maximum vorticity of the vortex generated in the Stokes layer corresponds to the wall itself.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 70–77, January–February, 1993.The authors are grateful to V. V. Kozlov for his interest in their work.  相似文献   

11.
This paper reports results of our experimental investigation on flow instability on a flat plate laminar boundary layer caused by a captive vortex migrating far outside the boundary layer. Results show that the sign of the circulation associated with the vortex is the main determinant for the severity of the boundary layer instability. A captive vortex with an opposite sign to that of the unperturbed shear layer vorticity causes a breakdown ahead of it, while the one with the same sign as the unperturbed shear layer vorticity gives rise to weaker excitation trailing it. Additional parameters that influence the flow instability are the strength and distance of the vortical disturbance from the boundary layer, as well as the translational speed of the vortex. These experimental results compliment the corresponding theoretical analysis of Sengupta et al. (J Fluid Mech 493:277–286, 2003).  相似文献   

12.
Changes in the flow structure, the vorticity distribution and the stream function during the transition process from the one celled vortex to the two celled vortex following a rapid change in the radial Reynolds number have been examined. Starting from a thin filament-like structure corresponding to the one celled vortex. a thick vortex core first grew up from the outlet region and turned into a cylindrical structure corresponding to the two celled vortex. The vorticity distribution also changed from a single-summit type to a ring-summit type.  相似文献   

13.
Equilibrium statistical mechanics is used for describing two-dimensional vortices in an unbounded incompressible ideal fluid. Both the energy and angular momentum integrals and a set of invariants are taken into account. The latter follows from the condition that any vorticity distribution can be obtained from an initial distribution by a differentiable areas-preserving transformation. The equations for the statistically equilibrium vorticity and passive admixture distributions are derived. It is argued that taking subsidiary invariants into account weakens the arbitrariness associated with the choice of a finite-dimensional approximation of the flow. The case in which the vorticity cloud behaves like a thermodynamic system undergoing an ordering phase transition is discussed.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 47–55, September–October, 1995.  相似文献   

14.
Equations that describe the evolution of a region with nonzero vorticity are formulated. These equations are solved on a bounded time interval for regions having the shape of a sphere or a circular cylinder at the initial time. It is shown that a spherical vortex formed in a medium at rest begins to move, and is stretched in the direction of the motion; a cylindrical vortex, under the influence of the nonuniform intensity of the vorticity on its boundary, changes both the magnitude and direction of its velocity, and describes a curvilinear trajectory. Expressions are obtained which describe the initial evolution of a fluid sphere of one density in a fluid medium of another density.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 3–11, November–December, 1980.  相似文献   

15.
In the framework of the linear theory of small perturbations the problem of unsteady subsonic flow past a two-dimensional cascade of plates has been considered in a number of papers. Thus, the unsteady aerodynamic characteristics of a cascade of vibrating plates were calculated in [1] by the method of integral equations, while the same method was used in [2, 3] to calculate the sound fields that are excited when sound waves Coming from outside or vorticity inhomogeneities of the oncoming flow act on the cascade. The problem of a two-dimensional cascade of vibrating plates in a supersonic flow was solved in [4, 5]. In [4] the solution was constructed on the basis of the well-known solution of the problem of vibrations of a single plate, while in [5] a variant of the method of integral equations was used which differed slightly from the usual formulation of this method [1–3]. The approach proposed in [5] is used below to calculate the unsteady flow past a two-dimensional cascade of plates in the case when vorticity inhomogeneities of a supersonic oncoming flow act on it. Equations are obtained for the strength of the unsteady pressure jumps arising in such a flow and the vortex wakes shed from the trailing edges of the plates. Examples of the calculations illustrating the accuracy of the method and its possibilities are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp, 152–160, May–June, 1986.  相似文献   

16.
The prediction of the two-dimensional unsteady flow established in a radial flow centrifugal pump is considered. Assuming the fluid incompressible and inviscid, the velocity field is represented by means of source and vorticity surface distributions as well as a set of point vortices. Using this representation, a grid-free (Lagrangian) numerical method is derived based on the coupling of the boundary element and vortex particle methods. In this context the source and vorticity surface distributions are determined through the non-entry boundary condition together with the unsteady Kutta condition. In order to satisfy Kelvin's theorem, vorticity is shed at the trailing edges of the impeller blades. Then the vortex particle method is used to approximate the convection of the free vorticity distribution. Results are given for a pump configuration experimentally tested by Centre Technique des Industries Mécaniques (CETIM). Comparisons between predictions and experimental data show the capability of the proposed method to reproduce the main features of the flow considered.  相似文献   

17.
When a gas flows with hypersonic velocity over a slender blunt body, the bow shock induces large entropy gradients and vorticity near the wall in the disturbed flow region (in the high-entropy layer) [1]. The boundary layer on the body develops in an essentially inhomogeneous inviscid flow, so that it is necessary to take into account the difference between the values of the gas parameters on the outer edge of the boundary layer and their values on the wall in the inviscid flow. This vortex interaction is usually accompanied by a growth in the frictional stress and heat flux at the wall [2, 3]. In three-dimensional flows in which the spreading of the gas on the windward sections of the body causes the high-entropy layer to become narrower, the vortex interaction can be expected to be particularly important. The first investigations in this direction [4–6] studied the attachment lines of a three-dimensional boundary layer. The method proposed in the present paper for calculating the heat transfer generalizes the approach realized in [5] for the attachment lines and makes it possible to take into account this effect on the complete surface of a blunt body for three-dimensional laminar, transition, or turbulent flow regime in the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 80–87, January–February, 1981.  相似文献   

18.
The problem of the interaction of a Prandtl–Mayer wave with a shear layer is solved using the small parameter method for the case where the flow vorticity in the shear layer is small. A direct expansion is constructed and its inadequacy at large distances from the vortex layer is proved. The strained coordinate method is used to obtain a uniformly adequate expansion. It is shown that for certain velocity distributions in the shear layer, the characteristics in the reflected simple wave resulting from the interaction intersect each other and a shock arises in the flow. There coordinates of the shock origin and the function describing the shock shape are obtained.  相似文献   

19.
Vortex sound   总被引:1,自引:0,他引:1  
Vortex motion is the only source of aerodynamic sound production in low Mach number flow: the unsteady part of the vorticity distribution contributes linearly to the sound field. The following fundamental model flows, which illustrate the vorticity as the predominant sound source in unsteady flows, are discussed: An initially planar elliptic vortex; two identical coaxial initially elliptic vortex rings, where a special case is the leap-frogging of two identical circular rings. For head-on collision of two identical circular vortex rings and for several cases of vortex-body interaction good agreement between theory and experiment exists. If the Mach number is not low, other mechanisms have also to be considered. Here the theory is not yet fully developed. Experimental results for a vortex-airfoil interaction in transonic flow show that local flow separation and boundary layer as well as compressibility effects play a basic role. However, if the motion of vorticity would be known in subsonic flow, essential parts of the sound field could be calculated by the theory. — In addition, it is shown that the general theory is well suited to provide a better understanding of the scattering of sound waves by vortex motion, at least for long wave lengths.  相似文献   

20.
The article discusses the two-dimensional flow of an incompressible liquid between two infinitely close concentric spheres, due to an initial distribution of the vorticity differing from zero. The concept of point singularities (vortices, sources, and sinks) at a sphere is introduced. Equations of motion are obtained for point vortices, as well as invariants of the motion, known for the plane case [1]. The simplest case of the mutual motion of a pair of vortices is considered. Equations are obtained for the motion of point vortices at a rotating sphere. Integral invariants for the continuous distribution of the vorticity are obtained, having the dynamic sense of the total kinetic energy and the momentum of the liquid at the sphere. The effect of the topology of the sphere on the dynamics of the vorticity is noted, and a comparison is made with the plane case.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 57–65, November–December, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号