首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南志杰  吴刚 《数学学报》2018,61(1):1-18
本文利用Fourier分解法首次建立了三维广义磁流体动力学方程组弱解的时间衰减估计,得到了该方程解关于时间衰减的上下界估计,并且获得了相应的最优代数衰减率.  相似文献   

2.
Yan Guo 《偏微分方程通讯》2013,38(12):2165-2208
We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained. The negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis.  相似文献   

3.
We use a general energy method recently developed by [Guo Y, Wang Y. Decay of dissipative equations and negative sobolev spaces. Commun. Partial Differ. Equ. 2012;37:2165–2208.] to prove the global existence and temporal decay rates of solutions to the three-dimensional compressible nematic liquid crystal flow in the whole space. In particular, the negative Sobolev norms of solutions are shown to be preserved along time evolution, and then the optimal decay rates of the higher order spatial derivatives of solutions are obtained by energy estimates and the interpolation inequalities.  相似文献   

4.
Consider the Cauchy problems for an n-dimensional nonlinear system of fluid dynamics equations. The main purpose of this paper is to improve the Fourier splitting method to accomplish the decay estimates with sharp rates of the global weak solutions of the Cauchy problems. We will couple together the elementary uniform energy estimates of the global weak solutions and a well known Gronwall''s inequality to improve the Fourier splitting method. This method was initiated by Maria Schonbek in the 1980''s to study the optimal long time asymptotic behaviours of the global weak solutions of the nonlinear system of fluid dynamics equations. As applications, the decay estimates with sharp rates of the global weak solutions of the Cauchy problems for $n$-dimensional incompressible Navier-Stokes equations, for the $n$-dimensional magnetohydrodynamics equations and for many other very interesting nonlinear evolution equations with dissipations can be established.  相似文献   

5.
We study the stability of solutions to a von Kármán plate model of memory type with acoustic boundary conditions. We establish the general decay rate result, using some properties of the convex functions. Our result is obtained without imposing any restrictive assumptions on the behavior of the relaxation function at infinity. These general decay estimates extend and improve on some earlier results-exponential or polynomial decay rates.  相似文献   

6.
We prove global pointwise decay estimates for a class of defocusing semilinear wave equations in n = 3 dimensions restricted to spherical symmetry. The technique is based on a conformal transformation and a suitable choice of the mapping adjusted to the nonlinearity. As a result we obtain a pointwise bound on the solutions for arbitrarily large Cauchy data, provided the solutions exist globally. The decay rates are identical with those for small data and hence seem to be optimal. A generalization beyond the spherical symmetry is suggested.  相似文献   

7.
In this paper we develop elements of the global calculus of Fourier integral operators in ${{\mathbb R}^n}$ under minimal decay assumptions on phases and amplitudes. We also establish global weighted Sobolev L2 estimates for a class of Fourier integral operators that appears in the analysis of global smoothing problems for dispersive partial differential equations. As an application, we exhibit a new type of weighted estimates for hyperbolic equations, where the decay of data in space is quantitatively translated into the time decay of solutions.  相似文献   

8.
In this paper we establish pointwise decay estimates of solutions to some linear elliptic equations by using the Nash–Moser iteration arguments and the ODE method. As applications we obtain sharp Gaussian decay estimates for solutions to nonlinear elliptic equations that are related with self-similar solutions to nonlinear heat equations and standing wave solutions to nonlinear Schrödinger equations with harmonic potential.  相似文献   

9.
We investigate the initial value problem for a class of nonlinear wave equations of sixth order with damping. The decay structure of this equation is of the regularity‐loss type, which causes difficulty in high‐frequency region. By using the Fourier splitting frequency technique and energy method in Fourier space, we establish asymptotic profiles of solutions to the linear equation that is given by the convolution of the fundamental solutions of heat and free wave equation. Moreover, the asymptotic profile of solutions shows the decay estimate of solutions to the corresponding linear equation obtained in this paper that is optimal under some conditions. Finally, global existence and optimal decay estimate of solutions to this equation are also established. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The Liapunov method is celebrated for its strength to establish strong decay of solutions of damped equations. Extensions to infinite dimensional settings have been studied by several authors (see e.g. Haraux, 1991 [11], and Komornik and Zuazua, 1990 [17] and references therein). Results on optimal energy decay rates under general conditions of the feedback is far from being complete. The purpose of this paper is to show that general dissipative vibrating systems have structural properties due to dissipation. We present a general approach based on convexity arguments to establish sharp optimal or quasi-optimal upper energy decay rates for these systems, and on comparison principles based on the dissipation property, and interpolation inequalities (in the infinite dimensional case) for lower bounds of the energy. We stress the fact that this method works for finite as well as infinite dimensional vibrating systems and as well as for applications to semi-discretized nonlinear damped vibrating PDE's. A part of this approach has been introduced in Alabau-Boussouira (2004, 2005) [1] and [2]. In the present paper, we identify a new, simple and explicit criteria to select a class of nonlinear feedbacks, for which we prove a simplified explicit energy decay formula comparatively to the more general but also more complex formula we give in Alabau-Boussouira (2004, 2005) [1] and [2]. Moreover, we prove optimality of the decay rates for this class, in the finite dimensional case. This class includes a wide range of feedbacks, ranging from very weak nonlinear dissipation (exponentially decaying in a neighborhood of zero), to polynomial, or polynomial-logarithmic decaying feedbacks at the origin. In the infinite dimensional case, we establish a comparison principle on the energy of sufficiently smooth solutions through the dissipation relation. This principle relies on suitable interpolation inequalities. It allows us to give lower bounds for the energy of smooth initial data for the one-dimensional wave equation with a distributed polynomial damping, which improves Haraux (1995) [12] lower estimate of the energy for this case. We also establish lower bounds in the multi-dimensional case for sufficiently smooth solutions when such solutions exist. We further mention applications of these various results to several classes of PDE's, namely: the locally and boundary damped multi-dimensional wave equation, the locally damped plate equation and the globally damped coupled Timoshenko beams system but it applies to several other examples. Furthermore, we show that these optimal energy decay results apply to finite dimensional systems obtained from spatial discretization of infinite dimensional damped systems. We illustrate these results on the one-dimensional locally damped wave and plate equations discretized by finite differences and give the optimal energy decay rates for these two examples. These optimal rates are not uniform with respect to the discretization parameter. We also discuss and explain why optimality results have to be stated differently for feedbacks close to linear behavior at the origin.  相似文献   

11.
In this paper, we first address the space‐time decay properties for higher‐order derivatives of strong solutions to the Boussinesq system in the usual Sobolev space. The decay rates obtained here are optimal. The proof is based on a parabolic interpolation inequality, bootstrap argument, and some weighted estimates. Secondly, we present a new solution integration formula for the Boussinesq system, which will be employed to establish the existence of strong solutions for small initial data in some scaling invariant function spaces. The smallness conditions are somehow weaker than those presented by Brandolese and Schonbek. We further investigate the asymptotic profiles and decay properties of these strong solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The Cauchy problem for singularly perturbed parabolic equations is considered, and weighted L2-estimates as well as certain decay properties of bounded classical solutions to it are established. These do not depend on the value of the small perturbation parameter, and allow to prove global in time existence of strong solutions to certain boundary-value problems for ultraparabolic equations with unbounded coefficients. Optimal decay estimates are proved for such solutions. All results concerning ultraparabolic equations apply, in particular, to the Kolmogorov equation for diffusion with inertia, to the (linear) Fokker-Planck equation, to the linearized Boltzmann equation, and to some nonlinear integro-differential ultraparabolic equations of the Fokker-Planck type, arising from biophysics. Optimal decay estimates are derived for global in time strong solutions to such equations.  相似文献   

13.
We study the dynamics of a piecewise (in time) distributed optimal control problem for Generalized MHD equations which model velocity tracking coupled to magnetic field over time. The long-time behavior of solutions for an optimal distributed control problem associated with the Generalized MHD equations is studied. First, a quasi-optimal solution for the Generalized MHD equations is constructed; this quasi-optimal solution possesses the decay (in time) properties. Then, some preliminary estimates for the long-time behavior of all solutions of Generalized MHD equations are derived. Next, the existence of a solution of optimal control problemis proved also optimality system is derived. Finally, the long-time decay properties for the optimal solutions is established.  相似文献   

14.
We are concerned with the global existence and decay rates of large solutions for the Poisson–Nernst–Planck equations. Based on careful observation of algebraic structure of the equations and using the weighted Chemin–Lerner-type norm, we obtain the global existence and optimal decay rates of large solutions without requiring the summation of initial densities of a negatively and positively charged species that is small enough. Moreover, the large solution is obtained for initial densities belonging to the low regularity Besov spaces with different regularity and integral indices, which indicates more specific coupling relations between the difference and the summation of negatively and positively charged densities.  相似文献   

15.
0IntroductionInthispaper,weconsidertheinitial-boundaryvalueproblemforthefailliliarequationwherefiisaboundeddomaininR"withsmoothboulldaryoff,p22isacollstantalldlp(z,u)l5of'(tl" 'forsomea20andc>0.FOrp(x,ti)=Itll"'u,theauthorsofpaper[4,7llolwereillterestedillllollllegativesolutionandhadobtainedfollowillgresults(alsosee[12]).1)If25a 2相似文献   

16.
We establish temporal decay estimates for weak solutions to the Hall-magnetohydrodynamic equations. With these estimates in hand we obtain algebraic time decay for higher order Sobolev norms of small initial data solutions.  相似文献   

17.
We will accomplish the exact limits for all order derivatives of the global weak solutions to a two-dimensional incompressible dissipative quasi-geostrophic equation. We will also establish the improved decay estimates with sharp rates for all order derivatives. We will consider two cases for the initial function and the external force and prove the optimal results for both cases. We will couple together existing ideas (including the Fourier transformation and its properties, Parseval''s identity, iteration technique, Lebesgue''s dominated convergence theorem, Gagliardo-Nirenberg-Sobolev interpolation inequality, squeeze theorem, Cauchy-Schwartz''s inequality, etc) existing results (the existence of global weak solutions, the existence of local smooth solution on $(T,\infty)$ and the elementary decay estimate with a sharp rate) and a few novel ideas to obtain the main results.  相似文献   

18.
The long-time behavior of solutions for an optimal distributed control problem associated with the Boussinesq equations is studied. First, a quasi-optimal solution for the Boussinesq equations is constructed; this quasi-optimal solution possesses the decay (in time) properties. Then, some preliminary estimates for the long-time behavior of all solutions of the Boussinesq equations are derived. Next, the existence of a solution for the optimal control problem is proved. Finally, the long-time decay properties for the optimal solutions is established.  相似文献   

19.
In this paper we establish the decay of the homogeneous H norms for solutions to the Navier Stokes equations in two dimensions. The rates of decay are obtained by means of the Fourier splitting method. The rate obtained is optimal in the sense that it coincides with the rates for solutions to the heat system.  相似文献   

20.
In this paper, we establish a generalized Hölder's or interpolation inequality for weighted spaces in which the weights are non-necessarily homogeneous. We apply it to the stabilization of some damped wave-like evolution equations. This allows obtaining explicit decay rates for smooth solutions for more general classes of damping operators. In particular, for 1−d models, we can give an explicit decay estimate for pointwise damping mechanisms supported on any strategic point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号