首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A highly sensitive and selective colorimetric lead biosensor based on DNAzyme-directed assembly of gold nanoparticles is reported. It consists of a DNAzyme and its substrate that can hybridize to a 5'-thio-modified DNA attached to gold nanoparticles. The hybridization brings gold nanoparticles together, resulting in a blue-colored nanoparticle assembly. In the presence of lead, the DNAzyme catalyzes specific hydrolytic cleavage, which prevents the formation of the nanoparticle assembly, resulting in red-colored individual nanoparticles. The detection level can be tuned to several orders of magnitude, from 100 nM to over 200 muM, through addition of an inactive variant of the DNAzyme. The concept developed here can be applied to the design of nucleic acid enzyme/nanoparticle sensors for analytes that are subject to in vitro selection, and thus can significantly expand the scope of nanomaterial applications and provide a novel approach to designing simple colorimetric biosensors.  相似文献   

2.
Using a Cu(2+)-dependent DNA ligation DNAzyme, a colorimetric sensor for Cu2+ has been developed based on directed assembly of DNA-functionalized gold nanoparticles by the ligation product, and such ligation DNAzyme-based sensors are intrinsically more sensitive than cleavage DNAzyme systems due to the lack of background.  相似文献   

3.
Immobilization of DNAzyme catalytic beacons on PMMA for Pb2+ detection   总被引:3,自引:0,他引:3  
Due to the numerous toxicological effects of lead, its presence in the environment needs to be effectively monitored. Incorporating a biosensing element within a microfluidic platform enables rapid and reliable determinations of lead at trace levels. A microchip-based lead sensor is described here that employs a lead-specific DNAzyme (also called catalytic DNA or deoxyribozyme) as a recognition element that cleaves its complementary substrate DNA strand only in the presence of cationic lead (Pb(2+)). Fluorescent tags on the DNAzyme translate the cleavage events to measurable, optical signals proportional to Pb(2+) concentration. The DNAzyme responds sensitively and selectively to Pb(2+), and immobilizing DNAzyme in the sensor permits both sensor regeneration and localization of the detection zone. Here, the DNAzyme has been immobilized on a PMMA surface using the highly specific biotin-streptavidin interaction. The strategy includes using streptavidin physisorbed on a PMMA surface to immobilize DNAzyme both on planar PMMA and on the walls of a PMMA microfluidic device. The immobilized DNAzyme retains its Pb(2+) detection activity in the microfluidic device and can be regenerated and reused. The DNAzyme shows no response to other common metal cations and the presence of these contaminants does not interfere with the lead-induced fluorescence signal. While prior work has shown lead-specific catalytic DNA can be used in its solubilized form and while attached to gold substrates to quantitate Pb(2+) in solution, this is the first use of the DNAzyme immobilized within a microfluidic platform for real time Pb(2+) detection.  相似文献   

4.
Colorimetric uranium sensors based on uranyl (UO2(2+)) specific DNAzyme and gold nanoparticles (AuNP) have been developed and demonstrated using both labeled and label-free methods. In the labeled method, a uranyl-specific DNAzyme was attached to AuNP, forming purple aggregates. The presence of uranyl induced disassembly of the DNAzyme functionalized AuNP aggregates, resulting in red individual AuNPs. Once assembled, such a "turn-on" sensor is highly stable, works in a single step at room temperature, and has a detection limit of 50 nM after 30 min of reaction time. The label-free method, on the other hand, utilizes the different adsorption properties of single-stranded and double-stranded DNA on AuNPs, which affects the stability of AuNPs in the presence of NaCl. The presence of uranyl resulted in cleavage of substrate by DNAzyme, releasing a single stranded DNA that can be adsorbed on AuNPs and protect them from aggregation. Taking advantage of this phenomenon, a "turn-off" sensor was developed, which is easy to control through reaction quenching and has 1 nM detection limit after 6 min of reaction at room temperature. Both sensors have excellent selectivity over other metal ions and have detection limits below the maximum contamination level of 130 nM for UO2(2+) in drinking water defined by the U.S. Environmental Protection Agency (EPA). This study represents the first direct systematic comparison of these two types of sensor methods using the same DNAzyme and AuNPs, making it possible to reveal advantages, disadvantages, versatility, limitations, and potential applications of each method. The results obtained not only allow practical sensing application for uranyl but also serve as a guide for choosing different methods for designing colorimetric sensors for other targets.  相似文献   

5.
Dynamic control of nanomaterial assembly states in response to chemical stimuli is critical in making multi-component materials with interesting properties. Previous work has shown that a Pb2+-specific DNAzyme allowed dynamic control of gold nanoparticle aggregation states in response to Pb2+, and the resulting color change from blue aggregates to red dispersed particles can be used as a convenient way of sensing Pb2+. However, a small piece of DNA (called invasive DNA) and low ionic strength (approximately 30 mM) were required for the process, limiting the scope of application in assembly and sensing. To overcome this limitation, a series of asymmetric DNAzymes, in which one of the two substrate binding regions is longer than the other, has been developed. With such a system, we demonstrated Pb2+-induced disassembly of gold nanoparticle aggregates and corresponding color change at room temperature without the need for invasive DNA, while also making the system more tolerant to ionic strength (33-100 mM). The optimal lengths of the long and short arms were determined to be 14 and 5 base pairs, respectively. In nanoparticle aggregates, the activity of the DNAzyme increased with decreasing ionic strength of the reaction buffer. This simpler and more versatile system allows even better dynamic control of nanoparticle aggregation states in response to chemical stimuli such as Pb2+, and can be used in a wider range of applications for colorimetric sensing of metal ions.  相似文献   

6.
Liu M  Lou X  Du J  Guan M  Wang J  Ding X  Zhao J 《The Analyst》2012,137(1):70-72
A facile microarray-based fluorescent sensor for the detection of lead (II) was developed based on the catalytic cleavages of the substrates by a DNAzyme upon its binding to Pb(2+). The release of the fluorophore labelled substrates resulted in the decrease of fluorescence intensity. The sensor had a quantifiable detection range from 1 nM to 1 μM and a selectivity of >20 fold for Pb(2+) over other metal ions.  相似文献   

7.
Controlled assembly of nanomaterials has been the focus of much research. In contrast, controlled disassembly has not received much attention, even though both processes have been shown to be important in biology. By using a Pb2+-dependent RNA-cleaving DNAzyme, we demonstrate here control of the disassembly of gold nanoparticle aggregates in response to Pb2+. In the process, we show that nanoparticle alignment plays an important role in the disassembly process, with the tail-to-tail configuration being the most optimal, probably because of the large steric hindrance of other configurations. The rate of disassembly is significantly accelerated by using small pieces of DNA to invade the cleaved substrate of the DNAzyme. Investigation of such a controlled disassembly process allows the transformation of previously designed "light-down" colorimetric Pb2+ sensors into "light-up" sensors.  相似文献   

8.
A dynamic light scattering sensor for Pb(2+) was constructed with oligonucleotide-modified gold nanoparticles based upon its cleavage property for DNAzyme.  相似文献   

9.
Yao J  Li J  Owens J  Zhong W 《The Analyst》2011,136(4):764-768
A sensitive and simple assay for the detection of Pb(2+) in aqueous solutions is reported. It takes advantage of the high affinity between single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWCNT) as well as the capability of SWCNT in fluorescence quenching. Lead(II) catalyzes the cleavage of a fluorescently labeled DNA substrate by a DNAzyme, which releases the single-stranded product to be adsorbed onto a SWCNT. The decrease in fluorescence is proportional to the Pb(2+) concentration. Concentrations as low as 1 nM Pb(2+) in water could be detected and the detection range spans over 5 orders of magnitude. The unique combination of Pb-specific DNAzyme with SWCNT produces a universal, facile and cost-effective sensing platform for lead ions. The concept can be applied to the design of detection assays for other metal ions or small molecules.  相似文献   

10.
Chen X  Cheng X  Gooding JJ 《The Analyst》2012,137(10):2338-2343
Silver nanoparticles capped with mercaptoacetic acid and 2-aminoethanethiol short-chain alkanethiols were prepared by a one-step method in aqueous solution for monitoring pH and a range of heavy metal ions. The mode of transduction is optical, based on the change in aggregation of the nanoparticles in solution. Because of the different ionic interactions between the modified nanoparticles, these nanoparticle sensors can rapidly detect Pb(2+), Cu(2+) and Fe(2+), with detection limits as low as 1 × 10(-5) M, 5 × 10(-7) M and 5 × 10(-5) M respectively, as well as having the ability to detect Cu(2+) ions from Pb(2+) and Fe(2+). Furthermore, the same functionalised nanoparticles are also sensitive to pH; exhibiting a good linear dynamic response between pH 1 and 10.  相似文献   

11.
A novel nucleic acid hairpin structure composed of Pb(2+)-dependent DNAzyme and HRP-mimicking DNAzyme was developed. This hairpin structure can be used as a sensor for the detection of Pb(2+) based on colorimetry.  相似文献   

12.
DNAzyme cascades activated by Pb(2+)- or L-histidine-dependent DNAzymes yield the horseradish peroxidase-mimicking catalytic nucleic acids that enable the colorimetric or chemiluminescence detection of Pb(2+) or L-histidine.  相似文献   

13.
Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.  相似文献   

14.
Wang L  Jin Y  Deng J  Chen G 《The Analyst》2011,136(24):5169-5174
In this paper, we have reported a sensitive assay for fluorescence "turn-on" detection of Pb(2+) in aqueous solutions based on FRET between gold nanorods (GNRs) and the FAM-labeled substrate strand of 8-17DNAzyme. The fluorescence of the FAM-labeled substrate strand is quenched when 8-17DNAzyme is adsorbed on GNRs surface through electrostatic interaction. In the presence of lead ions, the fluorescence is restored due to the decrease of FRET efficiency caused by the specific cleavage of the FAM-labeled substrate strand by the enzyme, which weakens the electrostatic interaction between the GNRs and short FAM-labeled DNA fragment. The interference of eleven common metal ions has been tested, indicating that Pb(2+) can be selectively detected. This method exhibits a high sensitivity for Pb(2+) with a detection limit of 61.8 pM and a linear range from 0.1 nM to 100 nM. It is a simple, sensitive, and selective method for Pb(2+) detection. Moreover, this sensing system obtained satisfying results for Pb(2+) detection in tap water samples.  相似文献   

15.
The heavy metal ions,especially Cd~(2+),Pb~(2+) and Hg~(2+),show extremely hazard to the environment and human being.The measurement of heavy metal ions using sensors is catching more and more attention for its advantages of high sensitivity and selectivity,low-cost,convenience to handle and rapid detection.In recent years,nanomaterials such as gold nanoparticles(NPs),magnetic nanoparticles,graphene and nanocomposite materials are applied in sensors for improving sensitivity and selectivity,making the research on electrochemical(EC) sensors,spectrometric biosensors and colorimetric biosensors become a hot spot in the application to investigate heavy metal ions,in particular,Cd~(2+),Pb~(2+) and Hg~(2+).In this short review,the research of advanced detection of Cd~(2+),Pb~(2+) and Hg~(2+) and its progress based on nanomaterial sensors in recent years is reviewed.  相似文献   

16.
A family of water-soluble colorimetric chemosensors incorporating an anthraquinone signalling subunit functionalized with a polyamine chain that bears hydrophilic diethoxyphosphoryl moieties was prepared with the aim of assaying metal cations. The outstanding UV-Vis absorption properties of the 1-aminoanthraquinone chromophore allowed the efficient visual detection and quantification of copper(II) ions by chelators L(1)-L(3) in buffered aqueous solution. Moreover, the visible response of L(2) is not interfered by addition of large excesses of 13 common metal ions, whereas chemosensor L(3) produces also a color change in the presence of equimolar amounts of lead(II). Considering the 134 nm gap between both absorption maxima, simultaneous colorimetric quantification of lead and copper can be envisaged. Detailed potentiometric and spectrophotometric analysis of Cu(2+) complexation by L(2) and L(3), as well as Pb(2+) and Cd(2+) by L(3) was undertaken in order to gain a deeper insight into the pH-dependent speciation and understanding the color changing process. Furthermore, the inner coordination sphere of the [PbL(3)](2+) complex was probed by NMR spectroscopy.  相似文献   

17.
We investigate interactions between graphene oxide and a Pb(2+)-dependent DNAzyme, based on which a Pb(2+) sensor with high sensitivity, selectivity and tunable dynamic range is developed.  相似文献   

18.
Feng L  Zhang Y  Wen L  Chen L  Shen Z  Guan Y 《The Analyst》2011,136(20):4197-4203
A colorimetric filtration method has been developed for the highly selective and sensitive determination of Ni(2+) and Pb(2+) ions. Determinations of Ni(2+) and Pb(2+) follow the filtration using nioxime (1,2-cyclohexanedione dioxime) and rhodizonic acid disodium salt, respectively, as colorimetric reagents. Different from regular instrumentation techniques, the metal chelate precipitations are continuously pumped into a home-made flow cell at a constant flow rate, and filtered by a cellulose acetate/nitrate membrane. The color changes of the membrane are imaged using a conventional flatbed scanner, and digitized. The special selection of individual channels in the red, green, and blue channels of the images filters the influences of coexisting ions and provides a highly selective detection of Ni(2+) and Pb(2+) cations. The linear relationship between the colorimetric response of the chosen channel and Ni(2+) or Pb(2+) concentrations indicates a quantitative detection. The detection limit for Pb(2+) is 3 μM (almost half of the Chinese wastewater discharge standard concentration), and is well below the nM level (94 nM) for Ni(2+) (a quarter of the WHO drinking water safe-exposure standard for Ni(2+)). The determinations take five to ten minutes. No shelf life issue exists because the chelating indicators react with metal directly without any pre-immobilizations.  相似文献   

19.
We investigate the aggregation kinetics of gold nanoparticles using both experimental techniques (i.e., quasi-elastic light scattering, UV-visible spectroscopy, and transmission electron microscopy) and mathematical modeling (i.e., constant-number Monte Carlo). Aggregation of gold nanoparticles is induced by replacing the surface citrate groups with benzyl mercaptan. We show that the experimental results can be well described by the model in which interparticle interactions are described by the classical DLVO theory. We find that final gold nanoparticle aggregates have a fractal structure with a mass fractal dimension of 2.1-2.2. Aggregation of approximately 11 initial gold nanoparticles appears to be responsible for the initial color change of suspension. This kinetic study can be used to predict the time required for the initial color change of a gold nanoparticle suspension and should provide insights into the design and optimization of colorimetric sensors that utilize aggregation of gold nanoparticles.  相似文献   

20.
近年来,作为颜色标记和信号发生器的贵金属纳米粒子由于其简单性和实用性而被广泛用于比色测定和传感的研究当中。本文综述了近十年基于贵金属纳米粒子生长的比色传感器策略和应用的最新进展,总结了基于贵金属纳米颗粒生长的单色及多色传感器的传感原理、分类及前沿应用,探索了其比色传感的信号产生、分类和放大机制。由于贵金属纳米粒子在不同尺寸、距离、形状、成分等基底上的生长会产生不同的LSPR共振峰以及显著的传感信号变化,我们详细讨论了贵金属纳米粒子在金纳米棒等晶种基底上生长的比色传感。最后,我们对目前该比色传感面临的挑战和未来前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号