首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We study a moving boundary problem modeling an injected fluid into another viscous fluid. The viscous fluid is withdrawn at infinity and governed by Darcy?s law. We present solutions to the free boundary problem in terms of time-derivative of a generalized Newtonian potentials of the characteristic function of the bubble. This enables us to show that the bubble occupies the entire space as the time tends to infinity if and only if the internal generalized Newtonian potential of the initial bubble is a quadratic polynomial. Howison (1985) [7], and DiBenedetto and Friedman (1986) [2], studied such behavior, but for bounded bubbles. We extend their results to unbounded bubbles.  相似文献   

2.
The nonlinear response of an oscillatory bubble in a complex fluid is studied. The bubble is immersed in a Newtonian liquid, which may have a dilute volume fraction of anisotropic additives such as fibers or few ppm of macromolecules. The constitutive equation for the fluid is based on a Maxwell model with an extensional viscosity for the viscous contribution. The model is considered new in the study of bubble dynamics in complex fluids. The numerical computation solves a system of three first order ordinary differential equations, including the one associated with the solution of the convolution integral, using a fifth order Runge–Kutta scheme with appropriated time steps. Asymptotic solutions of governing equation are developed for small values of the pressure forcing amplitude and for small values of the elastic parameter. A study of the bubble collapse radius is also presented. We compare the results predicted by our model with other model in the literature and a good agreement is observed. The calculated asymptotic solutions are also used to test the results of the numerical simulations. In addition, the orientation of the additives is considered. The angular probability density function is assumed to be a normal distribution. The results show that the model based on the fully aligned additives with the radial direction overestimates the tendency of the additives to stabilize the bubble motion, since the effect of extensional viscosity occurs due to the particle resistance to the movement throughout its longitudinal direction.  相似文献   

3.
The Boundary Element Method (BEM) is used to solve the problem of Stokes flow of a viscous fluid over a periodic striped texture of a superhydrophobic surface (SHS), partially filled with frictionless gas bubbles. The shape of the bubble surfaces and the position of the meniscus pinning points relative to the cavity walls are taken into account in the study. Two kinds of flows important for practical applications are considered: a pressure-driven flow in a thin channel with a bottom superhydrophobic wall and a shear-driven flow over a periodic texture. We study the flow pattern in the fluid over a single cavity containing a bubble with a curved phase interface shifted into the cavity. A parametric numerical study of the averaged slip length of the SHS is performed as a function of the geometric parameters of the texture. It is shown that the curvature of the phase interface and/or its shift into the cavity both result in the decrease in the average slip length. It is demonstrated that the BEM can be an efficient tool for studying Stokes flows over textured superhydrophobic surfaces with different geometries of microcavities and phase interfaces. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Summary An adiabatic gas-filled bubble in a viscous, incompressible liquid is subjected to a tension wave in the form of a step function in time. The governing equation is solved numerically. It is shown that there exists a dynamic tension threshold, similar to the Blake threshold in the static case, beyond which the bubble in the liquid will grow infinitely. The effec of the fluid viscosity on the forced oscillations of the bubble is discussed. Critical dynamic radii and critical dynamic pressures are given for a wide range of the radius of the bubble at rest, for both the viscous and inviscid liquids. The collapse mechanism of a bubble subjected to an exponentially decaying tension wave is explained.
Zusammenfassung Eine adiabatische Gasblase in einer zähen inkompressiblen Flüssigkeit wurde unter dem Einfluss einer zeitlich diskontinuierlichen Spannungswelle untersucht. Die Gleichungen wurden numerisch gelöst. Es wurde gezeigt, dass eine dynamische Spannungs-Schwelle ähnlich zur Blake-Schwelle des statischen Falles vorhanden ist. Wenn diese überschritten wird, wächst die Blase in der Flüssigkeit unbegrenzt. Die Wirkung der Zähigkeit auf die erzwungenen Blasenschwingungen wurde diskutiert. Kritische dynamische Radien und Drücke wurden für einen breiten Radiusbereich der Blase im Ruhezustand für zähe und reibungsfreie Flüssigkeiten gegeben. Der Zusammenbruch einer Blase in einer exponentiell gedämpften Spannungswelle wird erläutert.
  相似文献   

5.
We study the homogenization of a slow viscous two‐phase incompressible flow in a domain consisting of a free fluid domain, a porous medium, and the interface between them. We take into account the capillary forces on the fluid‐fluid interfaces. We construct boundary layers describing the flow at the interface between the free fluid and the porous medium. We derive a macroscopic model with a viscous two‐phase fluid in the free domain, a coupled Darcy law connecting two‐phase velocities in the porous medium, and boundary conditions at the permeable interface between the free fluid domain and the porous medium.  相似文献   

6.
Summary A new type of wave behaviour is found for third order waves in a compressible inviscid dipolar fluid. Several stability-like results are presented for the theories of a viscous incompressible dipolar fluid and a mixture of two viscous incompressible fluids.  相似文献   

7.
The joint motion of a viscous incompressible fluid and a completely submerged elliptic cylinder is analyzed at short times. The cylinder is assumed to start from rest and move horizontally at a constant acceleration. A feature of the problem is that, at high accelerations, the fluid becomes detached from the cylinder surface and a cavity is formed. The problem is generalized to an elliptic cylinder floating on the surface of a viscous fluid.  相似文献   

8.
The dynamics of compressible gas bubbles in a viscous shear flow and an acoustic field at low Reynolds numbers is studied. The numerical approach is based on the boundary element method (BEM), which is effective as applied to the three-dimensional simulation of bubble deformation. However, the application of the conventional BEM to compressible bubble dynamics faces difficulties caused by the degeneration of the resulting algebraic system. Additional relations based on the Lorentz reciprocity principle are used to cope with this problem. Test computations of the dynamics of a single bubble and bubble clusters in acoustic fields and shear flows are presented.  相似文献   

9.
This paper describes the peristaltic motion of a non-Newtonian fluid in a channel having compliant boundaries. Constitutive equations for a Maxwell fluid have been used. Perturbation method has been used for the analytic solution. The influence of pertinent parameters is analyzed. Comparison of the present analysis of Maxwell fluid is made with the existing results of viscous fluid.  相似文献   

10.
The steady viscous incompressible and slightly conducting fluid flow around a circular cylinder with an aligned magnetic field is simulated for the range of Reynolds numbers 100 ? Re ? 500 using the Hartmann number, M. The multigrid method with defect correction technique is used to achieve the second order accurate solution of complete non-linear Navier–Stokes equations. The magnetic Reynolds number is assumed to be small. It is observed that volume of the separation bubble decreases and drag coefficient increases as M is increased. We noticed that the upstream base pressure increases slightly with increase of M whereas downstream base pressure decreases with increase of M. The effect of the magnetic field on the flow is discussed with contours of streamlines, vorticity, plots of surface pressure and surface vorticity.  相似文献   

11.
An investigation of the characteristics of motion of a rigid body with variable internal mass distribution in a viscous fluid is carried out on the basis of a joint numerical solution of the Navier — Stokes equations and equations of motion for a rigid body. A nonstationary three-dimensional solution to the problem is found. The motion of a sphere and a drop-shaped body in a viscous fluid in a gravitational field, which is caused by the motion of internal material points, is explored. The possibility of self-propulsion of a body in an arbitrary given direction is shown.  相似文献   

12.
One investigates the stationary axisymmetric motion of a drop of a viscous incompressible fluid in the flow of a viscous incompressible fluid in the domain of moderate motion velocities (the Reynolds' number ~1–100), various surface tensions and relations between the viscosities inside and outside the drop. One gives a numerical algorithm for the computations. One gives some examples of flows for some values of the defining parameters.  相似文献   

13.
The behaviour of foams at rest, but particularly during fluid mechanical transport is not sufficiently investigated yet. The present article deals with protein foams as they have a great importance in food production. In the first part, the foaming process of a highly viscous liquid due to gaseous materials dispersed under pressure in the liquid and mass transport of volatile components dissolved in the liquid is considered. The aim is to calculate the foam volume and the concentration of the dissolved, volatile components as a function of the material and process parameters. In the second part, material equations for bubble suspensions with gas volume fractions ϕ ≤ 0.6 and small bubble deformations (i.e. NCa ≪ 1) are presented. The basics form two constitutive laws which are used for describing a steady shear flow. If the rates of work of the two models are compared, material equations for the shear viscosity and the normal stress differences can be derived. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study the free boundary between a viscous and an inviscid fluid satisfying the Navier-Stokes and Euler equations respectively. Surface tension is incorporated. We read the equations as a free boundary problem for one viscous fluid with a nonlocal boundary force. We decompose the pressure distribution in the inviscid fluid into two contributions. A positivity result for the first, and a compactness property for the second contribution are dervied. We prove a short time existence theorem for the two-phase problem  相似文献   

15.
The paper presents results of Direct Numerical Simulation of bubbly flow to analyse the interaction between the turbulent fluid and the bubbles. The simulations aim to investigate the effect of the bubble Reynolds number, related to the bubble size, and the void fraction. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The magnetohydrodynamic (MHD) flow in a rectangular duct is investigated for the case when the flow is driven by the current produced by electrodes, placed one in each of the walls of the duct where the applied magnetic field is perpendicular. The flow is steady, laminar and the fluid is incompressible, viscous and electrically conducting. A stabilized finite element with the residual-free bubble (RFB) functions is used for solving the governing equations. The finite element method employing the RFB functions is capable of resolving high gradients near the layer regions without refining the mesh. Thus, it is possible to obtain solutions consistent with the physical configuration of the problem even for high values of the Hartmann number. Before employing the bubble functions in the global problem, we have to find them inside each element by means of a local problem. This is achieved by approximating the bubble functions by a nonstandard finite element method based on the local problem. Equivelocity and current lines are drawn to show the well-known behaviours of the MHD flow. Those are the boundary layer formation close to the insulated walls for increasing values of the Hartmann number and the layers emanating from the endpoints of the electrodes. The changes in direction and intensity with respect to the values of wall inductance are also depicted in terms of level curves for both the velocity and the induced magnetic field.  相似文献   

17.
The focus of the present work is concerned with the study of the swimming of microscopic organisms that use a single flagellum for propulsion in a magnetohydrodynamic (MHD) fluid flowing through a porous medium. The flow is modelled by appropriate equations and the organism is modelled by an infinite flexible but inextensible transversely waving sheet, which represents approximately the flagellum. The governing equations subject to appropriate boundary conditions are solved analytically. Expressions for the velocity of propulsion of the microscopic organism are obtained. We show that as the MHD character of the fluid is removed the results match those of an earlier analysed problem of propulsion through a fluid in a porous medium. In addition, in the final case of a simple viscous fluid (absence of magnetic field), we show that as the permeability becomes large the results reduce to the swimming of such organisms in a viscous fluid (discounting the pores and the MHD character).  相似文献   

18.
A second-order non-linear partial differential equation modelling the gravity driven spreading of a thin viscous liquid film with time-dependent non-uniform surface tension Σ(t,r) is considered. The problem is specified in cylindrical polar coordinates where we assume the flow is axisymmetric. Similarity solutions describing the spreading of a thin drop and the flattening of a thin bubble are investigated.  相似文献   

19.
An analysis based on the Galerkin method is developed to examine the behaviour of a nonlinear bipolar viscous fluid mathematically modelled by stochastic non-Newtonian fluid motion equations. Existence and uniqueness of solutions to the stochastic equations are derived.  相似文献   

20.
In this work, we present the computational results on the wake instability in wobbling bubble regime as well as on the coalescence of two bubbles in different shape regimes. This is a continuation of our previous studies on the dynamics of a single gas bubble rising in a viscous liquid (see [A. Smolianski, H. Haario, P. Luukka, Computational Study of Bubble Dynamics, Research Report 86, Lappeenranta University of Technology, Finland]), and we use the same, finite-element/level-set/operator-splitting method that was proposed in [A. Smolianski, Numerical Modeling of Two-Fluid Interfacial Flows, Ph.D. Thesis, University of Jyväskylä, 2001]. The numerical method allows to simulate a wide range of flow regimes, accurately capturing the shape of the deforming interface of the bubble and the surface tension effect, while maintaining a good mass conservation. Due to the highly unstable and small-scale nature of the considered problems there are very few experimental investigations, but the comparison with available experimental data confirms a good accuracy of our numerical predictions. Our studies show that plausible results can be obtained with two-dimensional numerical simulations, when a single buoyant bubble or a coalescence of two bubbles is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号