首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrospray ionization of a mixture of the two gold phosphine chlorides, R3PAuCl (R = Ph and Me), silver nitrate and the amino acid N,N-dimethylglycine (DMG) yields a range of gold containing cluster ions including: (R3P)Au(PR'3)+; (R3PAu)(R'3PAu)Cl+ and (R3PAu)(R'3PAu)(DMG-H)+ (where R = R' = Ph; R = R' = Me; R = Me and R' = Ph). Collision induced dissociation (CID) of the (R3PAu)(R'3PAu)(DMG-H)+ precursor ions yielded the hitherto unknown gold hydride dimers (R3PAu)(R'3PAu)H+. The gas-phase chemistry of these dimers was studied using ion-molecule reactions, collision induced dissociation, electronic excitation dissociation (EED) and DFT calculations on the (H3PAu)2H+ model system. A novel phosphine ligand migration was found to occur prior to fragmentation under CID conditions and this was supported by DFT calculations, which revealed a transition state with a bridging phosphine ligand.  相似文献   

2.
Interaction of cis,trans,cis-[Rh(H)2(PR3)2(acetone)2]PF6 complexes (R = aryl or R3 = Ph2Me, Ph2Et) under H2 with E-semicarbazones gives the Rh(III)-dihydrido-bis(phosphine)-semicarbazone species cis,trans-[Rh(H)2(PR3)2{R'(R' ')C=N-N(H)CONH2}]PF6, where R' and R' ' are Ph, Et, or Me. The complexes are generally characterized by elemental analysis, 31P{1H} NMR, 1H NMR, and IR spectroscopies, and MS. X-ray analysis of three PPh3 complexes reveals chelation of E-semicarbazones by the imine-N atom and the carbonyl-O atom. In contrast, the corresponding reaction of [Rh(H)2(PPhMe2)2(acetone)2]PF6 with acetophenone semicarbazone gives the ortho-metalated-semicarbazone species cis-[RhH(PPhMe2)2{o-C6H4(Me)C=N-N(H)CONH2}]PF6. The X-ray structure of E-propiophenone semicarbazone is also reported. Rhodium-catalyzed, homogeneous hydrogenation of semicarbazones was not observed even at 40 atm H2.  相似文献   

3.
Synthesis of the title compounds, viz. [RN(CH2CHR'O)2]2Ge (1, R = Me, R' = H; 2, R = Me, R' = Ph; 3, R = Ph, R' = H), by the reaction of 2 equiv of corresponding dialkanolamines RN(CH2CHR'OH)2 (4, R = Me, R' = H; 5, R = Me, R' = Ph; 6, R = Ph, R' = H) with (AlkO)4Ge is reported. Composition and structures of all novel compounds were established by 1H and 13C NMR spectroscopy and mass spectrometry as well as elemental analysis data. The single-crystal X-ray diffraction of 2 has clearly indicated the presence of two transannular interactions Ge<--N in the compound. N atoms are cis-orientated. The compound 3 possesses long Ge...N distances. The structural data obtained from geometry optimizations by DFT calculations on 1-3 reproduces experimental results. Both cis- and trans-isomers were studied, and cis-configuration was found to be more thermodynamically stable for all three compounds. The transition states for possible cis <--> trans rearrangement processes in 1-3 were calculated. The properties of the Ge-O and Ge<--N bonds in 1-3 were analyzed by the AIM approach. The interactions between the Ge atom and N atoms as well as O atoms possess predominantly ionic character.  相似文献   

4.
A series of 2-iminopyrrole ligand precursors with increasing bulkiness [HNC4H3C(R)=N-2,6-R'2C6H3] (R = R' = H, 1a; R = Me, R'= H, 1b; R = H, R' = Me, 1c; R = R' = Me, 1d; R = H, R' = iPr, 1e; R = Me, R' = iPr, 1f) were synthesized and deprotonated with NaH to give the corresponding iminopyrrolyl sodium salts 2a-f. A set of homoleptic bis-ligand Co(II) complexes of the type [Co(kappa2N,N'-NC4H3C(R)=N-2,6-R'2C6H3)2] (R = R'= H, 3a; R = Me, R'= H, 3b; R = H, R' = Me, 3c; R = R' = Me, 3d; R = H, R' = iPr, 3e; R = Me, R' = iPr, 3f) was prepared by reaction of CoCl2 with the corresponding iminopyrrolyl sodium salts 2a-f. The new complexes were characterized by elemental analysis, magnetic susceptibility measurements, in powder and in solution, UV/vis/NIR, and, in some cases, X-ray crystallography. According to X-ray diffraction and magnetic measurements, the Co complexes 3a-e proved to be tetrahedral, which is the preferred geometry for Co(II) compounds. However, a square planar geometry is observed in the case of 3f, as determined by several characterization techniques. In this case, DFT calculations suggest the square planar geometry is slightly more stable than the tetrahedral one probably due to a combination of steric and electronic reasons.  相似文献   

5.
Reactions of lithium dialkyl/phenyl phosphanylmethylides, RR'PCH(X)Li (R, R' = Me, Et, Ph and R = Me, R' = Ph; X = H or Me), with sulfur diimides S(NR')2 (R' = (t)Bu or SiMe3) in an equimolar ratio yielded Janus head complexes with the structural motif [Li{RR'PCH(X)S(NR')2}]2 (R' = (t)Bu, SiMe3). The basic core of these dimeric complexes is composed of a (LiN)(2) four-membered ring containing two four-coordinated lithium atoms. A lithium complex of the new Janus head ligand with another structural motif [TMEDA·Li{Ph(2)PCH(2)S(NSiMe3)2}] (6) could be isolated from the reaction of [Ph2PCH2Li·TMEDA] with S(NSiMe3)2. Two monomeric complexes [Mg{Me2PCH2S(NR')2}2] (7, 8) were synthesised by a straightforward reaction of [Li{Me2PCH2S(NR')2}2] with MgCl2 in pentane. The magnesium atom is chelated by one phosphorus atom and two nitrogen atoms of each unit of the hemilabile ligand in a tripodal manner, leading to octahedral geometry around the magnesium cation. A complete analysis of [Ph2PCH2(SNSiMe3)(HNSiMe3)] (9) is also described in which one nitrogen atom of the imido moiety is protonated.  相似文献   

6.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

7.
Two different classes of silicone-modified ligands were prepared: nitrile derivatives, 4'-[3-(organosilyl)propoxy]biphenyl-4-carbonitrile R'3SiC3H6OC6H4C6H4CN (R'3Si- = a: Me3SiOSiMe2-, b: (Me(3)SiO)2SiMe-, c: Me3SiO(Me2SiO)3SiMe2-, d: Me3SiO(Me2SiO)25SiMe2-); and, pyridine derivatives, isonicotinic acid 2-methoxy-4-[3-(organosilyl)propyl]phenyl ester R'3SiC3H6Ph(O)MeOCOC5H4N . Compounds and were bound to Pd and Pt using ligand substitution reactions with organometallic precursors to give (R3SiC3H6OC6H4C6H4CN)2PdCl2, (R3SiC3H6OC6H4C6H4CN)2PtCl2 and (R3SiC3H6C6H3(OMe)OC(O)C5H4N)PtCl2(eta(2)-1-octene). The polydimethylsiloxane (PDMS)-supported Pt and Pd compounds and had excellent solubility in both organic solvents and polysiloxanes. All the Pt compounds exhibited good catalytic activity for hydrosilylation of vinylsilanes. The PDMS-supported Pd compound also was effective catalyst for hydrosilylation of a diene, isoprene, with 1,1,1,3,3-pentamethyldisiloxane MM(H) to produce the 1,4-adduct Me3SiOSiMe2CH2CH=CMeCH2-H as a major product.  相似文献   

8.
At atmospheric pressure and at 130-160 degrees C, primary aromatic amines (p-XC6H4NH2, X = H, Cl, NO2) are mono-N-alkylated in a single step, with symmetrical and asymmetrical dialkyl carbonates [ROCOOR', R = Me, R' = MeO(CH2)2O(CH2)2; R = R' = Et; R = R' = benzyl; R = R' = allyl; R = Et, R' = MeO(CH2)2O(CH2)2], in the presence of a commercially available NaY faujasite. No solvents are required. Mono-N-alkyl anilines are obtained with a very high selectivity (90-97%), in good to excellent yields (68-94%), on a preparative scale. In the presence of triglyme as a solvent, the mono-N-alkyl selectivity is independent of concentration and polarity factors. The reaction probably takes place within the polar zeolite cavities, and through the combined effect of the dual acid-base properties of the catalyst.  相似文献   

9.
The reactions of Me(3)SiN=P(OR")RR'(R" = Ph, CH(2)CF(3); R, R' = Me, Ph) with alcohols were investigated. With nonequivalent amounts of CF(3)CH(2)OH, the reactions produced high yields of the cyclic phosphazene (Me(2)PN)(3) and both the cis and trans isomers of nongeminally substituted [(Ph)(Me)PN](3). The isomers of this new cyclic phosphazene were separated by column chromatography and characterized by NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Crystals of the cis isomer 6a have a monoclinic crystal system, while the trans isomer 6b has a triclinic crystal system with two different molecules in an asymmetric unit. The bond lengths and bond angles are very similar to those of the simpler cyclic trimers (Me(2)PN)(3) and (Ph(2)PN)(3.) A likely pathway for the formation of these compounds is discussed.  相似文献   

10.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

11.
Bok T  Yun H  Lee BY 《Inorganic chemistry》2006,45(10):4228-4237
Regioselective nucleophilic aromatic substitution of an o-fluorine occurs to afford fluorine-substituted o-phenylene-bridged bis(anilido-aldimine) compounds o-C6H4[(C6H2R2)N=CH-C6F4-(H)N(C6H3R'2)]2 when Li(H)N-C6H3R'2 (R' = iPr, Et, Me) is reacted with o-C6H4[(C6H2R2)N=CH-C6F5]2 (R = iPr, Et, Me) in a nonpolar solvent such as diethyl ether or toluene. Successive additions of Me2Zn and SO2 gas to the bis(anilido-aldimine) compounds afford quantitatively dinuclear mu-methylsulfinato zinc complexes o-C6H4[[(C6H2R2)N=CH-C6F4-N(C6H3R'2)-kappa2N,N]Zn(mu-OS(O)Me)]2 (R = iPr, R' = iPr, 3a; R = iPr, R' = Me, 3c; R = Et, R' = (i)Pr, 3d; R = Et, R' = Et, 3e; R = Et, R' = Me, 3f; R = Me, R' = iPr, 3g; R = Me, R' = Et, 3h; R = Me, R' = Me, 3i). The molecular structure of 3c was confirmed by X-ray crystallography. Fluorine-substituted complexes 3a-i show significantly higher TOF (turnover frequencies) than the unfluorinated analogues for CO2/(cyclohexene oxide) copolymerization. The TOF is highly sensitive to the substituents R and R', and the highest TOF (2480 h(-1)) is obtained with 3g (R = Me, R' = iPr). Complex 3g is less sensitive to the residual protic impurities present in the monomers and shows activity at such a low catalyst concentration as [Zn]:[cyclohexene oxide] = 1:50,000, at which the unfluorinated analogue is completely inactive. By realizing the activity at such an extremely low [Zn]:[cyclohexene oxide] ratio, we achieve a high TON (turnover number) up to 10,100. High-molecular-weight polymers (M(n), 100,000-200,000) are obtained with a rather broad molecular-weight distribution (M(w)/M(n), 1.3-2.5). The obtained polymers are not perfectly alternating, and variable carbonate linkages (65-85%) are observed depending on the N-aryl ortho substituents R and R' and the polymerization conditions.  相似文献   

12.
The compound CpRh(C(2)H(3)CO(2)(t)Bu)(2) 1 has been synthesised as a mixture of two pairs of interconverting isomers which differ in the relative orientations of the alkene substituents. The four isomers have been fully characterised by NMR spectroscopy. When complex 1 is photolysed in the presence of a silane, HSiR(2)R'R(2)R'= Et(3), Me(3), HEt(2), (OMe)(3) and Me(2)Cl] the corresponding Si-H oxidative addition products CpRh(SiR(2)R')(H)(C(2)H(3)CO(2)(t)Bu) and CpRh(H)(2)(SiR(2)R')(2) are formed. The Rh(III) complexes CpRh(SiR(2)R')(H)(C(2)H(3)CO(2)(t)Bu) exist in two isomeric forms of comparable energy which interconvert in an intramolecular process that does not involve a reversible [1,3] hydride or [1,3] silyl migration. The hydride (1)H NMR resonances for these species consequently broaden before coalescing into a single peak. For R(2)R'= Et(3), the activation parameters for interchange from the major to minor isomer were Delta H++= 60.2 +/- 2 kJ mol(-1) and Delta S++= 8 +/- 9 J mol(-1) K(-1), while for R(2)R'= Me(3) and Et(2)H, Delta H++= 61.5 +/- 1 kJ mol(-1), Delta S++= 6 +/- 5 J mol(-1) K(-1), and Delta H++= 61.8 +/- 3 kJ mol(-1), Delta S++= 12 +/- 9 J mol(-1) K(-1) respectively for conversion from the major isomer to the minor. For these complexes an eta(2)-Rh-H-Si transition state or intermediate is consistent with the evidence. When R(2)R'=(OMe)(3) and Me(2)Cl the change in appearance of the hydride resonances is more complex, with the activation parameters for interchange from the major to minor isomer for the former species being Delta H++= 78.3 +/- 2 kJ mol(-1) and Delta S++= 30 +/- 7 J mol(-1) K(-1) while for Me(2)Cl the barrier proved too high to measure before decomposition occurred. The complex spectral changes could be simulated when a discrete eta(2)-Rh-H-Si intermediate was involved in the isomer interconversion process and hence silane rotation in all these systems is proposed to involve two isomers of CpRh(eta(2)-HSiR(2)R')(C(2)H(3)CO(2)(t)Bu).  相似文献   

13.
A family of novel titanasiloxanes containing the structural unit {[Ti(eta(5)-C(5)Me(5))O](3)} were synthesized by hydron-transfer processes involving reactions with equimolecular amounts of mu(3)-alkylidyne derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu(3)-CR)] (R=H (1), Me (2)) and monosilanols, R(3)'Si(OH), silanediols, R(2)'Si(OH)(2), and the silanetriol tBuSi(OH)(3). Treatment of 1 and 2 with triorganosilanols (R'=Ph, iPr) in hexane affords the new metallasiloxane derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-CHR)(OSiR(3)')] (R=H, R'=Ph (3), iPr (4); R=Me, R'=Ph (5), iPr (6)). Analogous reactions with silanediols, (R'=Ph, iPr), give the cyclic titanasiloxanes [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(2)SiR'(2))(R)] (R=Me, R'=Ph (7), iPr (8); R=Et, R'=Ph (9), iPr (10)). Utilization of tBuSi(OH)(3) with 1 or 2 at room temperature produces the intermediate complexes [{Ti(eta(5)-C(5)Me(5)) (mu-O)}(3)(mu-O(2)Si(OH)tBu)(R)] (R=Me (11), Et(12)). Further heating of solutions of 11 or 12 affords the same compound with an adamantanoid structure, [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(3)SitBu)] (13) and methane or ethane elimination, respectively. The X-ray crystal structures of 3, 4, 6, 8, 10, 12, and 13 have been determined. To gain an insight into the mechanism of these reactions, DFT calculations have been performed on the incorporation of monosilanols to the model complex [{Ti(eta(5)-C(5)H(5))(mu-O)}(3)(mu(3)-CMe)] (2 H). The proposed mechanism consists of three steps: 1) hydron transfer from the silanol to one of the oxygen atoms of the Ti(3)O(3) ring, forming a titanasiloxane; 2) intramolecular hydron migration to the alkylidyne moiety; and 3) a mu-alkylidene ligand rotation to give the final product.  相似文献   

14.
Herein we describe different C-C coupling reactions of permethyltitanocene and -zirconocene with disubstituted 1,3-butadiynes. The outcomes of these reactions vary depending on the metals and the diyne substituents. The reduction of [Cp2*MCl2] (Cp* = C5Me5; M = Ti, Zr) with Mg in the presence of disubstituted butadiynes RC triple bond C-C triple bond CR' is suitable for the synthesis of different C-C coupling products of the diyne and the permethylmetallocenes, and provides a new method for the generation of functionalized pentamethyl-cyclopentadienyl derivatives. For M = Zr and R = R' = tBu, the reaction gives, by a twofold activation of one pentamethylcyclopentadienyl ligand, the complex [Cp*Zr[-C(=C=CHtBu)-CHtBu-CH2-eta5-C5Me3-CH2-]] (3), containing a fulvene ligand that is coupled to the modified substrate (allenic subunit). When using the analogous permethyltitanocene fragment "Cp2*Ti", the reaction depends strongly on the substituents R and R'. The coupling product of the butadiyne with two methyl groups of one of the pentamethylcyclopentadienyl ring systems, [Cp*Ti[eta5-C5Me3-(CH2-CHR-eta2-C2-CHR'-CH2)]], is obtained with R = R' = tBu (4) and R = tBu, R' = SiMe3 (5). In these complexes one pentamethylcyclopentadienyl ligand is annellated to an eight-membered ring with a C-C triple bond, which is coordinated to the titanium center. A different activation of both pentamethylcyclopentadienyl ligands is observed for R = R' = Me, resulting in the complex [[eta5-C5Me4(CH2)-]Ti[-C(=CHMe)-C(=CHMe)-CH2-eta5-C5Me4]] (6), which displays a fulvene as well as a butadienyl-substituted pentamethylcyclopentadienyl ligand. The influence exerted by the size of the metal is illustrated in the reaction of [Cp2*ZrCl2] with MeC triple bond C-C triple bond CMe. Here the five-membered metallacyclocumulene complex [Cp2*Zr(eta4-1,2,3,4-MeC4Me)] (7) is obtained. The reaction paths found for R = R' = Me are identical to those formerly described for R = R' = Ph.  相似文献   

15.
New mononuclear titanium and zirconium imido complexes [M(NR)(R'(2)calix)] [M=Ti, R'=Me, R=tBu (1), R=2,6-C(6)H(3)Me(2) (2), R=2,6-C(6)H(3)iPr(2) (3), R=2,4,6-C(6)H(2)Me(3) (4); M=Ti, R'=Bz, R=tBu (5), R=2,6-C(6)H(3)Me(2) (6), R=2,6-C(6)H(3)iPr(2) (7); M=Zr, R'=Me, R=2,6-C(6)H(3)iPr(2) (8)] supported by 1,3-diorganyl ether p-tert-butylcalix[4]arenes (R'(2)calix) were prepared in good yield from the readily available complexes [MCl(2)(Me(2)calix)], [Ti(NR)Cl(2)(py)(3)], and [Ti(NR)Cl(2)(NHMe(2))(2)]. The crystallographically characterised complex [Ti(NtBu)(Me(2)calix)] (1) reacts readily with CO(2), CS(2), and p-tolyl-isocyanate to give the isolated complexes [Ti[N(tBu)C(O)O](Me(2)calix)] (10), [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [Ti[N(tBu)C(O)N(-4-C(6)H(4)Me)](Me(2)calix)] (13). In the case of CO(2) and CS(2), the addition of the heterocumulene to the Ti-N multiple bond is followed by a cycloreversion reaction to give the dinuclear complexes 11 and 12. The X-ray structure of 13.4(C(7)H(8)) clearly establishes the N,N'-coordination mode of the ureate ligand in this compound. Complex 1 undergoes tert-butyl/arylamine exchange reactions to form 2, 3, [Ti(N-4-C(6)H(4)Me)(Me(2)calix)] (14), [Ti(N-4-C(6)H(4)Fc)(Me(2)calix)] (15) [Fc=Fe(eta(5)-C(5)H(5))(eta(5)-C(5)H(4))], and [[Ti(Me(2)calix)](2)[mu-(N-4-C(6)H(4))(2)CH(2)]] (16). Reaction of 1 with H(2)O, H(2)S and HCl afforded the compounds [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [TiCl(2)(Me(2)calix)] in excellent yields. Furthermore, treatment of 1 with two equivalents of phenols results in the formation of [Ti(O-4-C(6)H(4)R)(2)(Me(2)calix)] (R=Me 17 or tBu 18), [Ti(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (19) and [Ti(mbmp)(Me(2)calix)] (20; H(2)mbmp=2,2'-methylene-bis(4-methyl-6-tert-butylphenol) or CH(2)([CH(3)][C(4)H(9)]C(6)H(2)-OH)(2)). The bis(phenolate) compounds 17 and 18 with para-substituted phenolate ligands undergo elimination and/or rearrangement reactions in the nonpolar solvents pentane or hexane. The metal-containing products of the elimination reactions are dinuclear complexes [[Ti(O-4-C(6)H(4)R)(Mecalix)](2)] [R=Me (23) or tBu (24)] where Mecalix=monomethyl ether of p-tert-butylcalix[4]arene. The products of the rearrangement reaction are [Ti(O-4-C(6)H(4)Me)(2) (paco-Me(2)calix)] (25) and [Ti(O-4-C(6)H(4)tBu)(2)(paco-Me(2)calix)] (26), in which the metallated calix[4]arene ligand is coordinated in a form reminiscent of the partial cone (paco) conformation of calix[4]arene. In these compounds, one of the methoxy groups is located inside the cavity of the calix[4]arene ligand. The complexes 24, 25 and 26 have been crystallographically characterised. Complexes with sterically more demanding phenolate ligands, namely 19 and 20 and the analogous zirconium complexes [Zr(O-4-C(6)H(4)Me)(2)(Me(2)calix)] (21) and [Zr(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (22) do not rearrange. Density functional calculations for the model complexes [M(OC(6)H(5))(2)(Me(2)calix)] with the calixarene possessing either cone or partial cone conformations are briefly presented.  相似文献   

16.
In aqueous media, alpha-keto amides LGCH(2)COCON(R)CH(R')CH(3) (1a, R = Et, R' = H; 1b, R = (i)()Pr, R' = Me; 1c, R = Ph, R' = H) with various carboxylate leaving groups (LG) at the C-3 position undergo photocleavage and release of carboxylic acids with formation of diastereomeric 5-hydroxyoxazolidin-4-ones 2a,c in the cases of 1a,c or 5-methyleneoxazolidin-4-ones 3b in the case of 1b. For 1a,b, Phi(photocleavage) = 0.24-0.38, whereas Phi(photocleavage) = ca. 0.05 for 1c. The proposed mechanism involves transfer of hydrogen from an N-alkyl group to the keto oxygen to produce zwitterionic intermediates 4a-c that eliminate carboxylate anions. The resultant imminium ions, H(2)C=C(OH)CON(+)(R)=C(R')CH(3) 5a-c, cyclize intramolecularly to 3b or undergo intermolecular addition of water followed by tautomerization and cyclization to give 2a,c. These inter- or intramolecular trapping reactions of 5 release protons that decrease the pH and cause bleaching of the 620 nm band of the pH indicator, bromocresol green. Determination of the bleaching kinetics by laser flash photolysis methods in the case of 1a gives time constants of 18-137 mus, depending on the leaving group ability of the carboxylate anion, whereas amides 1b show only a small leaving group effect. For 1a, the large leaving group effect is consistent with rate-limiting carboxylate elimination from 4a, whereas the proton release step would be largely rate determining for 1b. Photolyses of 1a (LG = CH(3)CO(2)(-), PhCH(2)CO(2)(-)) in neat CH(3)CN results in carboxylate elimination to form imminium ion 5a, followed by internal return to give aminals.  相似文献   

17.
The thermally stable silylene Si[(NCH2But)2C6H4-1,2] 1 undergoes oxidative addition reactions with the lithium amides LiNRR'(R = SiMe3, R' = But; R = SiMe3, R' = C6H3Me2-2,6; R = R' = Me or R = R' = Pri) to afford the new lithium amides Li(THF)2[N(R)Si(SiMe3){(NCH2But)2C6H4-1,2}][R = But2 or R = C6H3Me2-2,6 (3a)] or the new tris(amino)functionalised silyllithiums Li(THF)x[Si{(NCH2But)2C6H4-1,2}NRR'][R = SiMe3, R' = C6H3Me2-2,6, x = 2 (3); R = R'= Me, x = 3 (4) or R = R' = Pri, x = 3 (5)]. Compounds 4 and 5 are stable at ambient temperature but compound 3 is thermally labile and converts into 3a upon heating. The pathway for the formation of 2 and 3 is discussed and the X-ray structures of 2-5 are presented.  相似文献   

18.
The substitution kinetics of Me2PhP in cis-Pt(SiMePh2)2(PMe2Ph)2 (1) by the chelating ligand bis(diphenylphosphino)ethane has been followed at 25.0 degrees C in dichloromethane by stopped-flow spectrophotometry. Addition of the leaving ligand causes mass-law retardation compatible with a dissociative process via a three-coordinate transition state or intermediate. Exchange of Me2PhP in 1 has been studied by variable-temperature magnetization transfer 1H NMR in toluene-d8, giving kex326 = 1.76 +/- 0.12 s-1, delta H++ = 117.8 +/- 2.1 kJ mol-1, and delta S++ = 120 +/- 7 J K-1 mol-1. An exchange rate constant independent of the concentrations of free phosphine, a strongly positive delta S++, and nearly equal exchange and ligand dissociation rate constants also support a dissociative process. Density functional theory (DFT) calculations for a dissociative process give an estimate for the Pt-P bond energy of 98 kJ mol-1 for R = R' = Me, which is in reasonable agreement with the experimental activation energy given the differences between the substituents used in the calculation and those employed experimentally. DFT calculations on cis-Pt(PR3)2(SiR'3)2 (R = H, CH3; R' = H, CH3) are consistent with the experimental molecular structure and show that methyl substituents on the Si donors are sufficient to induce the observed tetrahedral twist. The optimized Si-Pt-Si angle in cis-Pt(SiH3)2(PH3)2 is not significantly altered by changing the P-Pt-P angle from its equilibrium value of 104 degrees to 80 degrees or 120 degrees. The origin of the tetrahedral twist is therefore not steric but electronic. The Si-Pt-Si angle is consistently less than 90 degrees, but the Si-Si distance is still too long to support an incipient reductive elimination reaction with its attendant Si-Si bonding interaction. Instead, it appears that four tertiary ligands introduce a steric strain which can be decreased by a twist of two of the ligands out of the plane; this twist is only possible when two strong sigma donors are cis to each other, causing a change in the metal's hybridization.  相似文献   

19.
A general synthetic method has been designed to prepare a series of unsymmetrical cationic organo-diplatinum complexes each containing two bridging 2-diphenylphosphinopyridine (PN), PPh(2)py, ligands and a platinum-platinum donor-acceptor bond. Thus, reaction of cis-[PtR(2)(SMe(2))2] (R = Ph, p-MeC(6)H(4) or p-FC(6)H(4)), 1, or cis,cis-[R(2)Pt(micro-SMe(2))(2)PtR(2)](R = Me) with 2 equiv. or 4 equiv., respectively, of PN in CH(2)Cl(2) gave cis-[PtR(2)(PN-kappa(1)P)(2)], 2. When complex 2 was reacted with 1 equiv. of HX (X = CF(3)COO) in CH(2)Cl(2), an approximately 2 : 1 mixture of trans-[PtRX(PN-kappa(1)P)(2)], 3, and [PtR(eta(2)-PN)(PN-kappa(1)P)]X, 4, was obtained. The reaction of one equiv. of the latter monomeric mixture with 0.5 equiv. of cis,cis-[R'(2)Pt(micro-SMe(2))(2)PtR'(2)] (R' = Me) or one equiv. of cis-[PtR'(2)(SMe(2))(2)] (R' = p-MeC(6)H(4)) in CH(2)Cl(2) immediately gave the head-to-head (HH) stereoisomer of the diplatinum complex hh-[RPt(micro-PN)(2)PtR'(2)]X, 6. However, the same reaction in benzene gave the corresponding head-to-tail (HT) stereoisomer ht-[RPt(micro-PN)(micro-NP)PtR'(2)]X, 9, in pure form after a few hours. The conversion of the HH isomer 6 to the HT isomer 9 in CH(2)Cl(2) took place very slowly during 10 d, while the conversion in C(6)H(6) was much faster and took place over 5 h. Based on the observations, a mechanism for the conversion of the kinetic HH stereoisomer to the thermodynamic HT stereoisomer is suggested which involves association of X- with the N(2)PtR'(2) center following by one-arm dissociation of one of the PN bridging ligands from the nitrogen terminal in the HH isomer, and subsequent exchange of the ligating atom and reformation of the HT arrangement. The methyl-di p-tolyl dimer ht-[MePt(micro-PN)(micro-NP)Pt(p-MeC(6)H(4))(2)]X, 9e, in solution gradually isomerizes to ht-[(p-MeC(6)H(4))Pt(micro-PN)(micro-NP)PtMe(p-MeC(6)H(4))]X, 11, by an aryl ligand transfer. All the complexes were fully characterized using multinuclear (1H, 31P and 195Pt) NMR spectroscopy and the complexes ht-[PhPt(micro-PN)(micro-NP)PtMe(2)]X, 9a, and ht-[(p-MeC(6)H(4))Pt(micro-PN)(micro-NP)PtMe(p-MeC(6)H(4))]X, 11, were further characterized by single crystal X-ray crystallography.  相似文献   

20.
A new class of pi-conjugated macromolecule, poly(p-phenylenephosphaalkene) (PPP), is reported. PPPs are phosphorus analogues of the important electronic material poly(p-phenylenevinylene) (PPV) where P=C rather than C=C bonds space phenylene moieties. Specifically, PPPs [-C(6)R(4)-P=C(OSiMe(3))-C(6)R'(4)-C(OSiMe(3))=P-](n)() (1: R = H, R' = Me; 11: R = Me, R' = H) were synthesized by utilizing the Becker reaction of a bifunctional silylphosphine, 1,4-C(6)R(4)[P(SiMe(3))(2)](2), and diacid chloride 1,4-C(6)R'(4)[COCl](2). Several model compounds for PPP are reported. Namely, mono(phosphaalkene)s R-P=C(OSiMe(3))-R' (4: R = Ph, R' = Mes; 7: R = Mes, R' = Ph), C-centered bis(phosphaalkene)s R-P=C(OSiMe(3))-C(6)R'(4)-C(OSiMe(3))=P-R (5: R = Ph, R' = Me; 8: R = Mes, R' = H), and P-centered bis(phosphaalkene)s R-C(OSiMe(3))=P-C(6)R'(4)-P=C(OSiMe(3))-R (6: R = Mes, R' = H; 10: R = Ph, R' = Me). Remarkably, selective Z-isomer formation (i.e., trans arylene moieties) is observed for PPPs when bulky P-substituents are employed while E/Z-mixtures are otherwise obtained. X-ray crystal structures of Z-7, Z,Z-8, and Z,Z-10 suggest moderate pi-conjugation. The twist angles between the P=C plane and unsubstituted arenes are 16 degrees -26 degrees , while those between the P=C plane and methyl-substituted arenes are 59 degrees -67 degrees . The colored PPPs and their model compounds were studied by UV/vis spectroscopy, and the results are consistent with extended pi-conjugation. Specifically, weakly emissive polymer E/Z-1 (lambda(max) = 338 nm) shows a red shift in its absorbance from model E/Z-4 (lambda(max) = 310 nm), while a much larger red shift is observed for Z-11 (lambda(max) = 394 nm) over Z-7 (lambda(max) = 324 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号