首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
The gas phase hydrogenation (523-573 K) of phenol has been studied over 1 wt.% Pd/Al2O3 and 1 wt.% Ni/SiO2 catalysts doped with Group I and II promoter oxides. A direct correlation between catalytic activity and the charge transfer capacity of the promoters is presented where hydrogenation is favored by increasing electron donation from the promoter. The Pd catalysts generated cyclohexanone (selectivity > 97%) as the predominant product; selectivity was unaffected by the presence of the alkali or alkaline earth dopants. The Ni system exhibited appreciable hydrogenolysis behavior and charge transfer from the dopants limited the degree of hydrodeoxygenation to favor complete hydrogenation to cyclohexanol.  相似文献   

3.
C-O bond scission of methoxide species adsorbed at the surface of Pd nanoparticle was studied by DF calculations for the example of cuboctahedral Pd(79). To investigate different locations of adsorbed intermediates as well as the transition state of C-O bond scission, a substrate model was used, which allows one to consider adsorbates without any local geometry restrictions. In contrast to reaction sites on the flat Pd(111) surface and on extended facets, scission of the C-O bond of methoxide at cluster edges is exothermic by approximately 40 kJ mol(-1) and the decomposition product CH(3) is found to be stabilized there. However, the high calculated activation barrier, approximately 140 mol(-1), implies only a very slow reaction compared to dehydrogenation of CH(3)O.  相似文献   

4.
《中国化学快报》2020,31(5):1071-1077
Rhenium is one of important components for heterogeneous catalysts,which has been recently used for the catalytic reactions related to the production of biomass-derived chemicals such as deoxydehydration of vicinal OH groups,C-O hydrogenolysis,and hydrogenation of carboxylic acids,and so on.Suitable oxidation state of Re as a catalytic active species is strongly dependent on the catalytic reactions.The control of the oxidation state of Re species on the catalysts is crucial on the catalyst development.  相似文献   

5.
Stable transition-metal nanoparticles of the type [M(0)](n) are easily accessible through the reduction of Ir(I) or Rh(III) compounds dissolved in "dry" 1-n-butyl-3-methylimidazolium hexafluorophosphate ionic liquid by molecular hydrogen. The formation of these [M(0)](n) nanoparticles is straightforward; they are prepared in dry ionic liquid whereas the presence of the water causes the partial decomposition of ionic liquid with the formation of phosphates, HF and transition-metal fluorides. Transmission electron microscopy (TEM) observations and X-ray diffraction analysis (XRD) show the formation of [Ir(0)](n) and [Rh(0)](n) nanoparticles with 2.0-2.5 nm in diameter. The isolated [M(0)](n) nanoparticles can be redispersed in the ionic liquid, in acetone or used in solventless conditions for the liquid-liquid biphasic, homogeneous or heterogeneous hydrogenation of arenes under mild reaction conditions (75 degrees C and 4 atm). The recovered iridium nanoparticles can be reused several times without any significant loss in catalytic activity. Unprecedented total turnover numbers (TTO) of 3509 in 32 h, for arene hydrogenation by nanoparticles catalysts, have been achieved in the reduction of benzene by the [Ir(0)](n) in solventless conditions. Contrarily, the recovered Rh(0) nanoparticles show significant agglomeration into large particles with a loss of catalytic activity. The hydrogenation of arenes containing functional groups, such as anisole, by the [Ir(0)](n) nanoparticles occurs with concomitant hydrogenolysis of the C-O bond, suggesting that these nanoparticles behave as "heterogeneous catalysts" rather than "homogeneous catalysts".  相似文献   

6.
Alumina supported Mo catalysts were prepared by adsorption of molybdenum blue (MB) on two alumina supports. Sulfided catalysts were tested in HDN/HDS reactions of pyridine and thiophene and compared with catalysts prepared from ammonium heptamolybdate (AHM). Activities of catalysts prepared from MB were considerably higher in thiophene HDS and pyridine hydrogenation and lower in C–N bond hydrogenolysis.  相似文献   

7.
Summary In the hydrogenation of -alkylfurfuryl alcohols in the vapor phase over an Ni-ZnO catalyst at 200–250°, reduction of the hydroxy group occurs with formation of 2-alkylfurans; these compounds are converted, partially or completely according to the temperature, into the corresponding aliphatic ketones as a result of the hydrogenolysis of the ring at the C-O bond.  相似文献   

8.
We investigated methanol adsorption and dissociation on bridge-bonded oxygen vacancies of the TiO2(110)-(1x1) surface using in situ scanning tunneling microscopy. We provide the first direct evidence that methanol dissociates on oxygen vacancies via O-H bond scission rather than C-O scission. For CH3OH coverages lower than the oxygen vacancy concentration, stationary methoxy-hydroxyl pairs form. At CH3OH coverages close to the oxygen vacancy concentration undissociated mobile CH3OH interacts with methoxy-hydroxyl pairs and facilitates the movement of hydroxyl away from the methoxy group.  相似文献   

9.
The environmental impact of CO2 emissions via the use of fossil resources as chemical feedstock and fuels has stimulated research to utilize renewable biomass feedstock. The biogenic compounds such as polyols are highly oxygenated and their valorization requires the new methods to control the oxygen to carbon ratio of the chemicals. The catalytic cleavage of C?O bonds and C?C bonds is promising methods, but the conventional catalyst systems encounter the difficulty to obtain the high yields of the desired products. This review describes our recent development of the high performance heterogeneous catalysts for the valorization of the biogenic chemicals such as glycerol, furfural, and levulinic acid via selective cleavage of C?O bonds and C?C bonds in the liquid‐phase. Selective C?O bond cleavage by hydrogenolysis enables production of various diols useful as engineering plastics, antifreeze, and cosmetics in high yields. The success of the selective C?C bond scission of levulinic acid can be applied to a wide range of the biogenic oxygenates such as carboxylic acids, esters, lactones, and primary alcohols, in which the selective C?C bond scission at adjacent to the oxygen functional groups are achieved. Furthermore, valorization of glycerol by selective acetylation and acetalization, and of levulinic acid by hydrogenation is described. Our catalysts show excellent performance compared to the reported catalysts in the aforementioned valorization.  相似文献   

10.
The reactions of aryl benzenesulfonates (YC6H4SO2OC6H4Z) with benzylamines (XC6H4CH2NH2) in acetonitrile at 65.0 degrees C have been studied. The reactions proceed competitively by S-O (kS-O) and C-O (kC-O) bond scission, but the former provides the major reaction pathway. On the basis of analyses of the Hammett and Br?nsted coefficients together with the cross-interaction constants rho(XY), rho(YZ), and rho(XZ), stepwise mechanisms are proposed in which the S-O bond cleavage proceeds by rate-limiting formation of a trigonal-bipyramidal pentacoordinate (TBP-5C) intermediate, whereas the C-O bond scission takes place by rate-limiting expulsion of the sulfonate anion (YC6H4SO3-) from a Meisenheimer-type complex.  相似文献   

11.
It has been shown that depending on the catalyst and the solvent used, during the conversion of dibenzyl ether to toluene hydrogenolysis of C-O ether bonds, dehydrogenation and hydrogenolysis of benzyl alcohol formed, hydrogenation and decarbonylation of benzaldehyde, and the recombination of benzyl radicals and the benzylation of toluene can take place. The activity of catalysts in hydrogenolysis reactions of dibenzyl ether and benzyl alcohol to produce toluene decreases as follows: Pd/C>Pd>Raney Ni>Rh, whereas the selectivity drops down in the order: Raney Ni>Pd>Pd/C>Rh. The reaction rates depend on the solvent and diminish in the order: ethanol>2-propanol>benzene.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1257–1261, July, 1993.  相似文献   

12.
Protection groups were introduced during biomass pretreatment to stabilize lignin's α,γ‐diol group during its extraction and prevent its condensation. Acetaldehyde and propionaldehyde stabilized the α,γ‐diol without any aromatic ring alkylation, which significantly increased final product selectivity. The subsequent hydrogenolysis catalyzed by Pd/C generated lignin monomers at near‐theoretical yields based on Klason lignin (48 % from birch, 20 % from spruce, 70 % from high‐syringyl transgenic poplar), and with high selectivity to a single 4‐n‐propanolsyringol product (80 %) in the case of the poplar. Unlike direct hydrogenation of native wood, hydrogenolysis of protected lignin with Ni/C also led to high selectivity to this single product (78 %), paving the way to high‐selectivity lignin upgrading with base metal catalysts. The use of extracted lignin facilitated valorization of polysaccharides, leading to high yields of all three major biomass polymers to a single major product.  相似文献   

13.
采用密度泛函理论研究了ZrO2负载的Ru基、Rh基以及Re改性的Rh基、Ir基催化剂上甘油氢解生成1,2-丙二醇和1,3-丙二醇的热力学过程, 重点考察了ReOx调变催化剂活性和选择性的作用机制. 结果表明, Ru/ZrO2和Rh/ZrO2催化剂上甘油分解经由脱水-加氢反应途径, 1,2-丙二醇的生成是热力学有利过程, 其中Ru基催化剂活性更高. 在Re修饰的Rh基和Ir基催化剂上, 反应遵循直接氢解机理, 其中金属表面解离的氢原子进攻ReOx团簇上与醇盐紧邻的C-O键是催化甘油转化为丙二醇最核心的步骤. ReOx-Rh/ZrO2催化剂上1,2-丙二醇为主要产物, 并伴随1,3-丙二醇的生成, ReOx的修饰则显著提高了Ir/ZrO2催化剂上1,3-丙二醇选择性. 与单金属催化剂上发生的间接氢解机理相比, 修饰催化剂上1,3-丙二醇选择性的提高可主要归因于Rh(Ir)-Re协同催化的直接氢解反应过程, 其中羟基化铼官能团有利于末端醇盐中间体的生成. ReOx-Ir/ZrO2催化剂上较大的Ir-Re团簇使得末端金属醇盐的立体优选性比次级醇盐更为突出, 从而具有最高的1,3-丙二醇选择性.  相似文献   

14.
The influence of the support (Al2O3 and activated carbon) on the activity of Mo, NiMo, and CoMo catalysts in thiophene hydrogenolysis is studied using 35S as a tracer. The carbon-supported catalysts have more active sites than their alumina-supported counterparts, while the turnover frequencies of these sites are similar. Thiophene desulfurization and hydrogenation of the resulting C4 olefins take place at the same Mo sites. Tracer tests have demonstrated that the active sites in the catalysts examined are identical and that the support has an effect only on their concentration.Translated from Kinetika i Kataliz, Vol. 46, No. 1, 2005, pp. 85–96.Original Russian Text Copyright © 2005 by Kogan  相似文献   

15.
Alkane C-H bond activation by various catalysts and enzymes has attracted considerable attention recently, but many issues are still unanswered. The conversion of ethane to ethanol and ethene by bare [Fe(III)═O](+) has been explored using density functional theory and coupled-cluster method comprehensively. Two possible reaction mechanisms are available for the entire reaction, the direct H-abstraction mechanism and the concerted mechanism. First, in the direct H-abstraction mechanism, a direct H-abstraction is encountered in the initial step, going through a collinear transition state C···H···O-Fe and then leading to the generation of an intermediate Fe-OH bound to the alkyl radical weakly. The final product of the direct H-abstraction mechanism is ethanol, which is produced by the hydroxyl group back transfer to the carbon radical. Second, in the concerted reaction mechanism, the H-abstraction process is characterized via overcoming four/five-centered transition states (6/4)TSH_c5 or (4)TSH_c4. The second step of the concerted mechanism can lead to either product ethanol or ethene. Moreover, the major product ethene can be obtained through two different pathways, the one-step pathway and the stepwise pathway. It is the first report that the former pathway starting from (6/4)IM_c to the product can be better described as a proton-coupled electron transfer (PCET). It plays an important role in the product ethene generation according to the CCSD(T) results. The spin-orbital coupling (SOC) calculations demonstrate that the title reaction should proceed via a two-state reactivity (TSR) pattern and that the spin-forbidden transition could slightly lower the rate-determining energy barrier height. This thorough theoretical study, especially the explicit electronic structure analysis, may provide important clues for understanding and studying the C-H bond activation promoted by iron-based artificial catalysts.  相似文献   

16.
Periodic, self-consistent, Density Functional Theory (PW91-GGA) calculations are used to study competitive paths for the decomposition of methanol on Pt(111). Pathways proceeding through initial C-H and C-O bond scission events in methanol are considered, and the results are compared to data for a pathway proceeding through an initial O-H scission event [Greeley et al. J. Am. Chem. Soc. 2002, 124, 7193]. The DFT results suggest that methanol decomposition via CH(2)OH and either formaldehyde or HCOH intermediates is an energetically feasible pathway; O-H scission to CH(3)O, followed by sequential dehydrogenation, may be another realistic route. Microkinetic modeling based on the first-principles results shows that, under realistic reaction conditions, C-H scission in methanol is the initial decomposition step with the highest net rate. The elementary steps of all reaction pathways (with the exception of C-O scission) follow a linear correlation between the transition state and final state energies. Simulated HREELS spectra of the intermediates show good agreement with available experimental data, and HREELS spectra of experimentally elusive reaction intermediates are predicted.  相似文献   

17.
研究了4-甲基二苯并噻吩(4-MDBT)和二苯并噻吩(DBT)在CoMo/γ-Al2O3上的加氢脱硫反应产物分布及其可能的反应网络,通过反应压力和温度对产物分布影响的研究,揭示了加氢脱硫反应的可能机理。研究发现4-MDBT在CoMo/γ-Al2O3上的加氢脱硫反应主要通过直接氢解路径和加氢路径进行,且两者反应速率相当;DBT在 CoMo/γ-Al2O3上的加氢脱硫反应主要通过直接氢解路径进行。4-MDBT分子位于4位的甲基阻碍其在催化剂表面通过硫原子的端连吸附,从而降低了其直接氢解脱硫路径的反应速率,因而也降低了其总的加氢脱硫转化率。反应压力降低,DBT和4-MDBT加氢脱硫反应中加氢路径反应速率明显下降,而其对氢解路径影响较小,但效果却与加氢路径相反,反应压力对4-MDBT转化率的影响大于DBT。反应温度对DBT和4-MDBT加氢脱硫反应中加氢路径和氢解路径都有明显影响,但是对DBT加氢脱硫反应中氢解路径的影响小于加氢路径,而对4-MDBT加氢脱硫反应中氢解路径的影响稍高于加氢路径,4-MDBT分子中甲基的供电子作用有利于相连苯环的加氢反应。  相似文献   

18.
Selective hydrogenolysis of cyclic and linear ether C-O bonds is accomplished by a tandem catalytic system consisting of lanthanide triflates and sinter-resistant supported palladium nanoparticles in an ionic liquid. The lanthanide triflates catalyze endothermic dehydroalkoxylation, while the palladium nanoparticles hydrogenate the resulting intermediate alkenols to afford saturated alkanols with high overall selectivity. The catalytic C-O hydrogenolysis is shown to have significant scope, and the C-O bond cleavage is turnover-limiting.  相似文献   

19.
Chemoselective hydrogenation of olefinic double bonds without concomitant hydrogenolysis of allylic and benzylic C-O linkages was performed successfully by the aid of active hydrogen permeated through a Pd sheet electrode.  相似文献   

20.
甲基环戊烷在铂催化剂上氢解的动力学研究   总被引:1,自引:0,他引:1  
庄益平  Frenne 《催化学报》1997,18(4):271-274
研究了甲基环戊烷在负载型铂催化剂上的氢解动力学,建立了新的动力学模型,在Pt/SiO2上,两个平行反应(一个生成正己烷,另一个生成甲基戊烷)在甲基环戊烷吸附脱氢过程中存在显著的焓变差异,而C-C键断裂活化能则相近,在Al2O3负载铂催化剂上,反应的表现活经能仅是在Pt/SiO2上的一半,这是由于Cl离子的存在,改变了铂的催化性能,导致缺电子铂颗粒的形成,使反应速率的控制步骤从在Pt/SiO2上的C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号