首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tetrametallic cluster complexes {Cp*Ir[E(2)C(2)(B(10)H(9))]}Rh(2)(cod){Cp*Ir[E(2)C(2) (B(10)H(10))]} (E = S; Se) have been synthesized by reactions of the 16-electron half-sandwich iridium complexes [Cp*Ir{E(2)C(2)(B(10)H(10))}] [Cp* = eta(5)-C(5)Me(5), E = S, Se] with [Rh(cod)(micro-OEt)(2)] at room temperature in toluene solution. In the solid state, this tetrametallic cluster exhibits an irregular nearly planar metal skeleton with the two carborane dichalcogenolato ligands bridging the four metal centers from both sides of the tetrametallic plane. Even though all metal atoms coordinate bridging chalcogen atoms, they show different electronic and coordination environments. The molecular structures of and have been determined by X-ray crystallography.  相似文献   

2.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

3.
Reaction of sodium hydrotris(methimazolyl)borate (NaTm(Me)) with cobalt halides leads to the formation of paramagnetic pseudotetrahedral [Co(Tm(Me))X] (X = Cl, Br, I), of which the bromide has been crystallographically characterized. Mass spectrometry reveals the presence of higher molecular weight fragments [Co(Tm(Me))(2)](+) and [Co(2)(Tm(Me))(2)X](+) in solution. Aerial oxidation in donor solvents (e.g. MeCN) leads to formation of the [Co(Tm(Me))(2)](+) cation, which has been crystallographically characterized as the BF(4)(-), ClO(4)(-), Br(-), and I(-), salts. Attempts to prepare the mixed sandwich complex, [Co(Cp)(Tm(Me))](+), resulted in ligand decomposition to yield [Co(mtH)(3)I]I (mtH = 1-methylimidazole-2-thione), but with the more electron donating methylcyclopentadienyl (Cp(Me)) ligand, [Co(Cp(Me))(Tm(Me))]I was isolated and characterized. Electrochemical measurements reveal that the cobalt(III) Tm(Me) complexes are consistently more difficult to reduce than their Tp and Cp congeners.  相似文献   

4.
The N-imidoylamidine ligand i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2 2 was prepared. Direct reactions with AlI3 or AlMe3 afforded [(i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlI2][AlI4] 3 and [i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlMe2][AlMe4].AlMe3, 4 respectively. Thermolysis of 4 gave (i-Pr2C6H3NC(=CH2)(NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlMe2 6. Subsequent reaction with B(C6F5)3 gave the zwitterionic species [(i-Pr2C6H3)N(C(=CH2)NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlMe(mu-MeB(C6F5)3)] 7. In a related reactions of 2, [Ph3C][B(C6F5)4] and AlMe3, AlH3.NEtMe2 or AlD3.NMe3, the complexes [(i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlR2][B(C6F5)4] (R = Me 5, H 8, D 9) and [(i-Pr2C6H3)N(C(=CH2)NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlH][B(C6F5)4] 10 are formed. Single-crystal X-ray data for 2, 3, 5 and 10 are reported.  相似文献   

5.
Metathesis reactions between either SrI(2) or BaI(2) and 2 equiv of the potassium phosphanide [[(Me(3)Si)(2)CH]-(C(6)H(4)-2-OMe)P]K yield, after recrystallization, the complexes [[([Me(3)Si](2)CH)(C(6)H(4)-2-OMe)P](2)M(THF)(n)] [M = Sr, n = 2 (5); Ba, n = 3 (6)]. Similar metathesis reactions between MI(2) and 2 equiv of the more sterically demanding potassium phosphanide [[(Me(3)Si)(2)CH](C(6)H(3)-2-OMe-3-Me)P]K yield the chemically isostructural complexes [[([Me(3)Si](2)CH)(C(6)H(3)-2-OMe-3-Me)P](2)M(THF)(2)] [M = Ca (9), Sr (7), Ba (8)]. Compounds 5-9 have been characterized by multi-element NMR spectroscopy and X-ray crystallography. Complex 9 is thermally unstable and decomposes at room temperature to give the tertiary phosphane [(Me(3)Si)(2)CH](C(6)H(3)-2-OMe-3-Me)P(Me) and an unidentified Ca-containing product. Compounds 5 and 6 also decompose at elevated temperatures to give the corresponding tertiary phosphane [(Me(3)Si)(2)CH](C(6)H(4)-2-OMe)P(Me) and intractable metal-containing products. The decomposition of 5, 6, and 9 suggests that these compounds undergo an intramolecular methyl migration from the O atom in one phosphanide ligand to the P atom of an adjacent phosphanide ligand to give species containing dianionic alkoxo-phosphanide ligands.  相似文献   

6.
A series of group 13 main group complexes with pi,sigma-type bonding interaction of the formula [{(eta (5)-RC 2B 9H 9)(CH 2)(eta (1)-NMe 2)}MMe] (M = Al, R = H 5, Me 6; Ga, R = H 7, Me 8; In, R = H 9, Me 10) was produced by the reaction of group 13 metal alkyls (MMe 3; M = Al, Ga, In) with the dicarbollylamine ligands, nido-8-R-7,8-C 2B 9H 10-7-(CH 2)NHMe 2 (R = H 1, Me 2). The reactions of 1 and 2 with AlMe 3 in toluene initially afforded tetra-coordinated aluminum complexes with sigma,sigma-type bonding interaction, [{(eta (1)-RC 2B 9H 10)(CH 2)(eta (1)-NMe 2)}AlMe 2] (R = H 3, Me 4), which readily underwent further methane elimination to yield the corresponding constrained geometry complexes (CGCs, 5 and 6) of aluminum with pi,sigma-bonding interaction. However, the reactions between 1 and 2 and MMe 3 (M = Ga, In) in toluene produced gallium and indium pi,sigma-CGCs of 7 and 10 directly, not proceeding through sigma,sigma-intermediates. The structures of group 13 metal CGCs were established by X-ray diffraction studies of 5, 6, and 8, which authenticated a characteristic eta (5):eta (1)-coordination mode of the dicarbollylamino ligand to the group 13 metals. A similar pi,sigma-bonding interaction was also established in ethylene-bridged dicarbollylethylamine series. Thus, aluminum pi,sigma-CGCs of dicarbollylethylamine, [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}AlMe] (R = H 17, Me 18), were prepared by the trans-metalation of the [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}Ti(NMe 2) 2] (R = H 15, Me 16) with AlMe 3. However, only sigma,sigma-bonded complexes of the formula [{(eta (1)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}AlMe 2] (R = H 13, Me 14) were isolated by the reaction between [ nido-7-8-R-7,8-C 2B 9H 10-(CH 2) 2HNBz 2] (R = H 11, Me 12) and AlMe 3. When methane-elimination reactions between metal alkyls and dicarbollylamines were carried out with either the gallium atom or monobenzyl aminoethyl tethered ligands, [ nido-7-H 2NBz(CH 2) 2-8-R-7,8-C 2B 9H 10] (R = H 21, Me 22), desired pi,sigma-CGCs, [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}GaMe] (R = H 19, Me 20) or [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NHBz)}AlMe] (R = H 23, Me 24), were generated, respectively. DFT calculation on 5 provides evidence of existence of pi,sigma-bonding of dicarbollylamine ligand to the aluminum atom: pi-bonding interaction of a dicarbollyl unit becomes intensified in the presence of a weak sigma-bonding amine-tethered group. Furthermore, preference for the formation of pi,sigma-bonding was predicted by optimizing a reaction profile including sigma,sigma- and pi,sigma-structures as well as transition state structures for each methylene- and ethylene-spaced ligand system, 3-5 and 14- 18, to reveal that pi,sigma-bonding interaction is more favorable in the case of a methylene-tethered ligand system.  相似文献   

7.
The coordination chemistry of bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (1, LH) with aluminum- and zinc-alkyls has been studied. Reaction of 1 with AlR3 affords the adducts [LH] x AlR3 (R = Me, 2; Et, 3), which undergo alkane elimination upon heating to yield the amido complexes [L]AlR2 (R = Me, 4; Et, 5). Reaction of LiO(iPrO)C=CMe2 with 2 proceeds via N-H deprotonation to give Li[L]AlMe3 (6), while the former enolate adds to 4 to generate [Me2C=C(OiPr)OLi] x [L]AlMe2 (7). Similarly, the 1:1 reaction of ZnEt2 with 1 gives [LH] x ZnEt2 (9), which is transformed into [L]ZnEt (10) upon heating. When an excess of ZnEt2 was used in the latter reaction, the bimetallic complex [L]ZnEt x ZnEt2 (11) was isolated beside 10. Performing the same reaction in the presence of O2 traces yielded selectively the dinuclear ethyl-ethoxide complex [L]Zn2Et2(mu-OEt) (12), which was alternatively prepared from the reaction of 10 and ZnEt(OEt). Zinc chloride complexes [LH] x ZnRCl (R = Et, 13; p-CH3C6H4CH2, 14) and [L]ZnCl (15) were prepared in high yields following similar strategies. Ethyl abstraction from 10 with B(C6F5)3 yields [L]Zn+EtB(C6F5)3- (16). All complexes have been characterized by multinuclear nuclear magnetic resonance (NMR), elemental analysis, and single-crystal X-ray diffraction studies for four-coordinate Al complexes 2, 4, and 6 and Zn complexes 9-12 and 14. Aluminate species 6 and 7 initiate the polymerization of methyl methacrylate, and the monomer conversions are improved in the presence of neutral complexes 2 or 4, respectively; however, these methyl methacrylate (MMA) polymerizations are uncontrolled. Polymerization of rac-lactide takes place at 20 degrees C in the presence of zinc ethoxide complex 12 to yield atactic polymers with controlled molecular masses and relatively narrow polydispersities.  相似文献   

8.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

9.
Triphenylmethylphosphonium salts, [PPh3Me]aMXn (M=Cu2+, Co2+, Mn2+, Ni2+ Fe3+ Pb2+ and Hg2+; X=Cl or I; a=1 or 2 and n=3 or 4) prepared by reacting PPh3MeX with the metal dihalide in EtOH sol-utions, have been characterized by electronic, Raman, far i.r. and Mo¨ssbaur spectra and by their magnetic properties as well as by elemental analyses. The copper complexes [PPh3Me]2CuCl4 and [PPh3Me]2Cu3Cl8 were characterized by X-ray crystallography and the structures are described. Powder diffraction patterns have shown that the cobalt and manganese tetrachloride complexes are isomorphous. Investigation by d.s.c. measurements showed that the complexes exhibit structural phase transitions.  相似文献   

10.
Ammonolyses of mono(pentamethylcyclopentadienyl) titanium(IV) derivatives [Ti(eta5-C5Me5)X3] (X = NMe2, Me, Cl) have been carried out in solution to give polynuclear nitrido complexes. Reaction of the tris(dimethylamido) derivative [Ti(eta5-C5Me5)(NMe2)3] with excess of ammonia at 80-100 degrees C gives the cubane complex [[Ti(eta5-C5Me5)]4(mu3-N)4] (1). Treatment of the trimethyl derivative [Ti(eta5-C5Me5)Me3] with NH3 at room temperature leads to the trinuclear imido-nitrido complex [[Ti(eta/5-CsMes)(mu-NH)]3(mu3-N)] (2) via the intermediate [[Ti(eta5-C5Me5)Me]2(mu-NH)2] (3). The analogous reaction of [Ti(eta5-C5Me5)Me3] with 2,4,6-trimethylaniline (ArNH2) gives the dinuclear imido complex [[Ti(eta5-C5Me5)Me])2(mu-NAr)2] (4) which reacts with ammonia to afford [[Ti(eta5-C5Me5)(NH2)]2(mu-NAr)2] (5). Complex 2 has been used, by treatments with the tris(dimethylamido) derivatives [Ti(eta5-C5H5-nRn)(NMe2)3], as precursor of the cubane nitrido systems [[Ti4(eta5-C5Me5)3(eta5-C5H5-nRn)](mu3-N)4] [R = Me n = 5 (1), R = H n = 0 (6), R = SiMe3 n = 1 (7), R = Me n = 1 (8)] via dimethylamine elimination. Reaction of [Ti(eta5-C5Me5)Cl3] or [Ti(eta5-C5Me5)(NMe2)Cl2] with excess of ammonia at room temperature gives the dinuclear complex [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) where an intramolecular hydrogen bonding and a nonlineal nitrido ligand bridge the "Ti(eta5-C5Me5)Cl(NH3)" and "Ti(eta5-C5Me5)Cl2" moieties. The molecular structures of [[Ti(eta5-C5Me5)Me]2 (mu-NAr)2] (4) and [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) have been determined by X-ray crystallographic studies. Density functional theory calculations also have been conducted on complex 9 to confirm the existence of an intramolecular N-H...Cl hydrogen bond and to evaluate different aspects of its molecular disposition.  相似文献   

11.
The C-Cl bonds of ortho-chlorinated benzamides Cl-ortho-C(6)H(4)C(=O)NHR (R = Me (1), nBu (2), Ph (3), (4-Me)Ph (4) and (4-Cl)Ph (5)) were successfully activated by tetrakis(trimethylphosphine)nickel(0) and tetrakis(trimethylphosphine)cobalt(0). The four-coordinate nickel(II) chloride complexes trans-[(C(6)H(4)C([double bond, length as m-dash]O)NHR)Ni(PMe(3))(2)Cl] (R = Me (6), nBu (7), Ph (8) and (4-Me)Ph (9)) as C-Cl bond activation products were obtained without coordination of the amide groups. In the case of 2, the ionic penta-coordinate cobalt(II) chloride [(C(6)H(4)C(=O)NHnBu)Co(PMe(3))(3)]Cl (10) with the [C(phenyl), O(amide)]-chelate coordination as the C-Cl bond activation product was isolated. Under similar reaction conditions, for the benzamides 3-5, hexa-coordinate bis-chelate cobalt(III) complexes (C(6)H(4)C(=O)NHR)Co(Cl-ortho-C(6)H(4)C(=O)NR)(PMe(3))(2) (11-13) were obtained via the reaction with [Co(PMe(3))(4)]. Complexes 11-13 have both a five-membered [C,N]-coordinate chelate ring and a four-membered [N,O]-coordinate chelate ring with two trimethyphosphine ligands in the axial positions. Phosphonium salts [Me(3)P(+)-ortho-C(6)H(4)C(=O)NHR]Cl(-) (R = Ph (14) and (4-Me)Ph (15)) were isolated by reaction of complexes 8 and 9 as a starting material under 1 bar of CO at room temperature. The crystal and molecular structures of complexes 6, 7 and 9-12 were determined by single-crystal X-ray diffraction.  相似文献   

12.
A series of bis(imino)pyridyliron and -cobalt complexes [[2,6-(CR=NAr)2C5H3N]MX2] (R=H, Me; M=Fe, Co; X=Cl, Br) 8-16 containing imino-aryl rings (Ar) with at least one small ortho substituent, as well as Ar=biphenyl and Ar=naphthyl, has been synthesised. Crystallographic analyses of complexes 9 (Ar = 2,3-dimethylphenyl), 13 and 14 (Ar= biphenyl; X= Cl or Br, respectively) reveal a distorted trigonal-bipyramidal geometry in the solid state. These complexes, in combination with methyl aluminoxane (MAO), are active catalysts for the oligomerisation of ethylene, yielding >99% linear alpha-olefin mixtures that follow a Schulz-Flory distribution. Iron ketimine (R = Me) precatalysts give the highest activities and a greater alpha-value than their aldimine (R = H) analogues. Cobalt precatalysts follow a similar trend, though their activities are almost two orders of magnitude lower than those of the corresponding iron catalysts. Ethylene pressure studies on cobalt precatalyst 15 reveal a first-order dependence on ethylene for both the rate of propagation and the rate of chain transfer, and a pressure independence of the alpha value.  相似文献   

13.
The ligands, PhPNXMe (1), PhPNXPh (2), and PhPNSMe (3), (PhPNX = 2-Ph2P-C6H4CH[double bond, length as m-dash]NC6H4X-2; X = O, S) have been prepared. A range of new ruthenium complexes were synthesised using these and related ligands, namely: [{RuCl(PhPNO)}2Cl] (4), [Ru(PhPNO)2] (5), [RuCl(PhPNXR)(PPh3)]BPh4 [X = O, R = Me (6); X = O, R = Ph (7); X = S, R = Me (8)], [{RuCl(PhPNX'R)}2Cl]X [X' = O, R = Me, X = Cl(-) (9); X' = S, R = Me, X = BPh4(-) or PF6(-) (10)], and [RuCl(PhPNO-eta 6C6H5)]BPh4 (11). The catalytic activity of these complexes with respect to the hydrosilyation of acetophenone and the hydrogenation of styrene has been investigated, giving an insight into the requirements for an active complex in these reactions.  相似文献   

14.
The syntheses of the parent compounds [(p-Bu(t)-calix[4]-(O)2(OR)2)Fe-L] [R = Me, L = THF, 5; R = Bu(n), L = THF, 6; R = PhCH2, L = THF, 7; R = SiMe3, L = none, 8] have been performed by reacting the protonated form of the dialkylcalix[4]arene with [Fe2Mes4] [Mes = 2,4,6-Me3C6H2]. All of them undergo one-electron oxidative functionalization. By use of different oxidizing agents, the following iron(III) derivatives have been obtained: [(p-Bu(t)-calix[4]-(O)2(OR)2)Fe-X] [X = Cl, R = Me, 9; X = I, R = Me, 10] and [(p-Bu(t)-calix[4]-(O)2(OR)2)2Fe2(mu-X] [X = O, R = Me, 11; X = O, R = Bu(n), 12; X = S, R = Me, 13], 9 and 10 being particularly appropriate for a further functionalization of the metal. The last three display typical antiferromagnetic behavior [J = -78.6 cm-1, 11; J = -64.1 cm-1, 13]. In the case of 7 and 8, the reaction with O2 led to the dealkylation of one of the alkoxo groups, with the formation of a dimeric iron(III) derivative ([mu-p-Bu(t)-calix[4]-(O)3(OR))2Fe2] [R = PhCH2, 14; R = SiMe3, 15] [J = -9.8 cm-1]. The reaction of the parent compounds with ButNC and diazoalkanes led to the formation of [Fe=C] functionalities supported by a calix[4]arene oxo surface. The following compounds have been isolated and characterized: ([p-Bu(t)-calix[4]-(O)2(OR)2)Fe=CNBut] [R = SiMe3, 16, nu CN = 2175 cm-1], ([p-Bu(t)-calix[4]-(O)2(OR)2)Fe=CPh2] [R = Me, 17; R = PhCH2, 18; R = SiMe3, 19]. The three carbene complexes 17-19 display quite an unusual high-spin state, which is a consequence of the formation of a weak pi interaction between the metal and the carbene carbon, as confirmed by the extended Hückel calculations. The carbene functionality has been removed from the iron center in the reaction with O2 and HCl. The proposed structures have been supported by X-ray analyses of complexes 8, 9, 12, 14, 16, 17, and 19.  相似文献   

15.
Treatment of [[Ti(eta5-C5Me5)(mu-NH)]3(mu3-N)] (1) with the diolefin complexes [[MCl(cod)]2] (M = Rh, Ir; cod = 1,5-cyclooctadiene) in toluene afforded the ionic complexes [M-(cod)(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)]Cl [M = Rh (2), Ir (3)]. Reaction of complexes 2 and 3 with [Ag(BPh4)] in dichloromethane leads to anion metathesis and formation of the analogous ionic derivatives [M(cod)(mu3-NH)3Ti3-(eta5-C5Me5)3(mu3-N)][BPh4] [M = Rh (4), Ir (5)]. An X-ray crystal structure determination for 5 reveals a cube-type core [IrTi3N4] for the cationic fragment, in which 1 coordinates in a tripodal fashion to the iridium atom. Reaction of the diolefin complexes [[MCl(cod))2] (M = Rh, Ir) and [[RhCl(C2H4)2]2] with the lithium derivative [[Li(mu3-NH)2(mu3-N)-Ti3(eta5-C5Me5)3(mu3-N)]2] x C7H8 (6 C7H8) in toluene gave the neutral cube-type complexes [M(cod)(mu-NH)2(mu3-N)Ti3-(eta5-C5Me5)3(mu3-N)] [M = Rh (7), Ir (8)] and [Rh(C2H4)2(mu3-NH)2(mu3-N)Ti3(eta5-C5Me5)3(mu3-N)] (9), respectively. Density functional theory calculations have been carried out on the ionic and neutral azaheterometallocubane complexes to understand their electronic structures.  相似文献   

16.
Nitric oxide is an important molecule in biology and modulates a variety of physiological and pathophysiological processes. Some of its regulatory functions are exerted through interactions with redox-active elements, including iron, nickel, cobalt, and sulfur. Metalloenzymes containing [ nFe- nS] ( n = 2 or 4) clusters can be activated or inactivated by reaction with NO, affording dinitrosyl iron complexes. Studies of the NO chemistry of small-molecule iron thiolate complexes have provided insight into these biological processes and suggested probable intermediates. To explore this chemistry from a different perspective, we prepared nickel and cobalt thiolate complexes and investigated their reactions with NO and related compounds. We report here the first examples of anionic complexes containing {Ni(NO)} (10) and {Co(NO) 2} (10) units, the reactivity of which suggests possible intermediates in the interconversion of iron thiolate nitrosyl compounds. Our results demonstrate new chemistry involving NO and simple complexes of nickel and cobalt supported by thiolates, which have been known for more than 30 years. The use of mass balance methodology was key to their discovery. Among the novel complexes reported are (Et 4N) 2[Ni(NO)(SPh) 3] ( 2), from (Et 4N) 2[Ni(SPh) 4] ( 1) and NO, (Et 4N) 2[Ni 2(NO) 2(mu-SPh) 2(SPh) 2] ( 3), from 1 and NO (+) or 2 and Me 3O (+), (Et 4N)[Co(NO) 2(SPh) 2] ( 5), from (Et 4N) 2[Co(SPh) 4] ( 4) and NO, and [Co 3(NO) 6(mu-SPh) 3] ( 6), from 5 and Me 3O (+). In the syntheses of 2 and 5, NO could be replaced by the convenient solid Ph 3CSNO.  相似文献   

17.
Several azaheterometallocubane complexes containing [MTi3N4] cores have been prepared by the reaction of [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) with zinc(II) and copper(I) derivatives. The treatment of 1 with zinc dichloride in toluene at room temperature produces the adduct [Cl2Zn{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (2). Attempts to crystallize 2 in dichloromethane gave yellow crystals of the ammonia adduct [(H3N)Cl2Zn{(mu3-NH)Ti3(eta5-C5Me5)3(mu-NH)2(mu3-N)}] (3). The analogous reaction of 1 with alkyl, (trimethylsilyl)cyclopentadienyl, or amido zinc complexes [ZnR2] leads to the cube-type derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = CH2SiMe3 (5), CH2Ph (6), Me (7), C5H4SiMe3 (8), N(SiMe3)2 (9)) via RH elimination. The amido complex 9 decomposes in the presence of ambient light to generate the alkyl derivative [{Me3Si(H)N(Me)2SiCH2}Zn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (10). The chloride complex 2 reacts with lithium cyclopentadienyl or lithium indenyl reagents to give the cyclopentadienyl or indenyl zinc derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = C5H5 (11), C9H7 (12)). Treatment of 1 with copper(I) halides in toluene at room temperature leads to the adducts [XCu{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (X = Cl (13), I (14)). Complex 13 reacts with lithium bis(trimethylsilyl)amido in toluene to give the precipitation of [{Cu(mu4-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}2] (15). Complex 15 is prepared in a higher yield through the reaction of 1 with [{CuN(SiMe3)2}4] in toluene at 150 degrees C. The addition of triphenylphosphane to 15 in toluene produces the single-cube compound [(Ph3P)Cu{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (16). The X-ray crystal structures of 3, 8, 9, and 15 have been determined.  相似文献   

18.
Lee HK  Lam CH  Li SL  Zhang ZY  Mak TC 《Inorganic chemistry》2001,40(18):4691-4695
The binuclear cobalt(II) amide complex [(CoL2)2-(TMEDA)] (1) [L = N(Si(t)BuMe2)(2-C5H3N-6-Me); TMEDA = Me2NCH2CH2NMe2] has been synthesized by the reaction of anhydrous CoCl2 with 2 equiv of [Li(L)(TMEDA)]. X-ray crystallography revealed that complex 1 consists of two [CoL2] units linked by one TMEDA ligand molecule, which binds in an unusual N,N'-bridging mode. Protolysis of 1 with the bulky phenol Ar(Me)OH (Ar(Me) = 2,6-(t)Bu2-4-MeC6H2) and thiophenol ArSH (Ar = 2,4,6-(t)Bu3C6H2) gives the neutral monomeric cobalt(II) bis(aryloxide) [Co(OAr(Me))2(TMEDA)] (2) and dithiolate [Co(SAr)2(TMEDA)] (3), respectively. Complexes 1-3 have been characterized by mass spectrometry, microanalysis, magnetic moment, and melting-point measurements, in addition to X-ray crystallography.  相似文献   

19.
Enthalpies of chalcogen atom transfer to Mo(N[t-Bu]Ar)3, where Ar = 3,5-C6H3Me2, and to IPr (defined as bis-(2,6-isopropylphenyl)imidazol-2-ylidene) have been measured by solution calorimetry leading to bond energy estimates (kcal/mol) for EMo(N[t-Bu]Ar)3 (E = S, 115; Se, 87; Te, 64) and EIPr (E = S, 102; Se, 77; Te, 53). The enthalpy of S-atom transfer to PMo(N[ t-Bu]Ar) 3 generating SPMo(N[t-Bu]Ar)3 has been measured, yielding a value of only 78 kcal/mol. The kinetics of combination of Mo(N[t-Bu]Ar)3 with SMo(N[t-Bu]Ar)3 yielding (mu-S)[Mo(N[t-Bu]Ar)3]2 have been studied, and yield activation parameters Delta H (double dagger) = 4.7 +/- 1 kcal/mol and Delta S (double dagger) = -33 +/- 5 eu. Equilibrium studies for the same reaction yielded thermochemical parameters Delta H degrees = -18.6 +/- 3.2 kcal/mol and Delta S degrees = -56.2 +/- 10.5 eu. The large negative entropy of formation of (mu-S)[Mo(N[t-Bu]Ar)3]2 is interpreted in terms of the crowded molecular structure of this complex as revealed by X-ray crystallography. The crystal structure of Te-atom transfer agent TePCy3 is also reported. Quantum chemical calculations were used to make bond energy predictions as well as to probe terminal chalcogen bonding in terms of an energy partitioning analysis.  相似文献   

20.
[W(H)(NO)(PMe3)4] (1) was prepared by the reaction of [W(Cl)(NO)(PMe3)4] with NaBH4 in the presence of PMe3. The insertion of acetophenone, benzophenone and acetone into the W-H bond of 1 afforded the corresponding alkoxide complexes [W(NO)(PMe3)4(OCHR1R2)](R1 = R2 = Me (2); R1 = Me, R2 = Ph (3); R1 = R2 = Ph (4)), which were however thermally unstable. Insertion of CO2 into the W-H bond of yields the formato-O complex trans-W(NO)(OCHO)(PMe3)4 (5). Reaction of trans-W(NO)(H)(PMe3)4 with CO led to the formation of mer-W(CO)(NO)(H)(PMe3)3 (6) and not the formyl complex W(NO)(CHO)(PMe3)4. Insertion of Fe(CO)(5), Re2(CO)10 and Mn2(CO)10 into trans-W(NO)(H)(PMe3)4 resulted in the formation of trans-W(NO)(PMe3)4(mu-OCH)Fe(CO)4 (7), trans-W(NO)(PMe3)4(mu-OCH)Re2(CO)9 (8) and trans-W(NO)(PMe3)4(mu-OCH)Mn2(CO)9 (9). For Re2(CO)10, an equilibrium was established and the thermodynamic data of the equilibrium reaction have been determined by a variable-temperature NMR experiments (K(298K)= 104 L mol(-1), DeltaH=-37 kJ mol(-1), DeltaS =-86 J K(-1) mol(-1)). Both compounds 7 and 8 were separated in analytically pure form. Complex 9 decomposed slowly into some yet unidentified compounds at room temperature. Insertion of imines into the W-H bond of 1 was also additionally studied. For the reactions of the imines PhCH=NPh, Ph(Me)C=NPh, C6H5CH=NCH2C6H5, and (C6H5)2C=NH with only decomposition products were observed. However, the insertion of C10H7N=CHC6H5 into the W-H bond of led to loss of one PMe3 ligand and at the same time a strong agostic interaction (C17-H...W), which was followed by an oxidative addition of the C-H bond to the tungsten center giving the complex [W(NO)(H)(PMe3)3(C10H6NCH2Ph)] (10). The structures of compounds 1, 4, 7, 8 and 10 were studied by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号