首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axial and equatorial hydrogen-bond conformers of the trimethylene sulfide.hydrogen fluoride complex have been generated and characterized in the supersonic jet of a molecular beam Fourier transform microwave experiment. It is shown that the ring-puckering large amplitude motion of trimethylene sulfide is responsible for the observed conformers. The axial conformer has been found to be the most stable and has been proved by the existence of relaxation of the high-energy equatorial form to it. This conformational preference has been explained in the context of a delicate balance between primary and secondary hydrogen bonds. The interconversion between both conformers takes place through the ring-puckering motion of the heterocycle, provided that the barrier to the ring inversion remains low after complexation, as all experimental findings indicate. The structural parameters of the trimethylene sulfide and the hydrogen bond have been derived from the analysis of the rotational spectra of the C(3)H(6) (32)S.HF, C(3)H(6) (34)S.HF, (13)C(alpha) (12)C(2)H(6) (32)S.HF, and (13)C(beta) (12)C(2)H(6) (32)S.HF isotopomers. Both conformers have C(s) symmetry with the hydrogen fluoride located in the molecular symmetry plane of trimethylene sulfide, which is puckered at a similar angle to that found for the bare ring.  相似文献   

2.
McKee ML 《Inorganic chemistry》2001,40(22):5612-5619
Two pathways have been considered in the fluorination of CB(5)H(6)(-) and CB(9)H(10)(-) by HF. In the ionic HF fluorination pathway, the monocarborane anion cage is first protonated in a BBB face followed by H(2) elimination and fluoride anion addition. In the covalent HF fluorination pathway, HF is first coordinated through hydrogen to the BBB face. Next, the fluorine can add to either an axial or equatorial boron atom which opens the cage to a nido structure with an endo fluoride substituent. Endo to exo rearrangement occurs with a small activation barrier followed by H(2) elimination. In both pathways, fluorination at the equatorial boron position is predicted to have smaller activation barriers even though substitution at the axial position leads to the more stable products.  相似文献   

3.
Fourier transform microwave rotational spectra in the 6-22 GHz region are obtained for the complex formed between 1,1,2-trifluoroethylene and hydrogen fluoride, including the normal isotopomer, the two singly substituted 13C species, and the complex obtained with DF. A unique planar structure for the complex is determined from a combined analysis of the rotational constants derived from the spectra and atomic positions obtained using Kraitchman [Am. J. Phys. 21, 17 (1953)] substitution coordinates. Consistent with this structure, no hyperfine splitting of rotational lines due to the nuclear quadrupole coupling interaction is observed for the D-containing species. Although the primary interaction in the complex is a hydrogen-fluorine hydrogen bond, as is the case for all previously studied Lewis acid-fluoroethylene complexes, the CF2CHF-HF complex adopts a distinctly different geometry in which both the primary and secondary interactions occur between the HF molecule and a F atom and a H atom, respectively, bonded to the same carbon of CF2CHF. The 2.020(41) A hydrogen bond has hydrogen fluoride as the donor and 1,1,2-trifluoroethylene as the acceptor and forms a 109.0(13) degrees C-F...H angle. The secondary interaction between the hydrogen fluoride F atom and the H atom geminal to the acceptor F atom causes the hydrogen bond to deviate 41.6(51) degrees from linearity. Structural comparisons with analogous complexes formed with mono- and difluorinated ethylenes suggest that the primary hydrogen bond strength and the fluoroethylene fluorine atom basicity both decrease with increasing fluorine substitution. In the course of this work, it was necessary to obtain additional rotational spectra for the 1,1,2-trifluroethylene monomer and to improve the precision of the values of the structural parameters for this molecule.  相似文献   

4.
A new stable structure has been found for the anion clusters of hydrogen fluoride. The ab initio method was used to optimize the structures of the (HF)(3)(-), (HF)(4)(-), (HF)(5)(-), and (HF)(6)(-) anion clusters with an excess "solvated" electron. Instead of the well-known "zig-zag" (HF)(n)(-) structure, a new form, (HF)(n-1)F(-)···H, was found with lower energy. In this new form, the terminal hydrogen atom in the (HF)(n)(-) chain is separated from the other part of the cluster and the inner hydrogens transfer along the hydrogen bonds toward the outside fluoride. The negative charge also transfers from the terminal HF molecule of the chain to the center fluoride atoms. The (HF)(n)(-) clusters for n = 4, 5, and 6 have not yet been observed experimentally. These results should assist in the search for these systems and also provide a possible way to study the proton and electron transfer in some large hydrogen bonding systems.  相似文献   

5.
The alpha-amino acids 4(S)-hydroxyproline and 4(R)-hydroxyproline have been studied under isolation conditions in gas phase using laser-ablation molecular-beam Fourier transform microwave spectroscopy. Two conformers of each molecule have been detected in the jet-cooled rotational spectrum. The most stable conformer in both molecules exhibits an intramolecular N...H-O hydrogen bond (configuration 1) between the hydrogen atom of the carboxylic group and the nitrogen atom. The second conformer is characterized by an intramolecular N-H...O=C hydrogen bond (configuration 2). The conformers of 4(R)-hydroxyproline adopt a C(gamma)-exo puckering, while those of 4(S)-hydroxyproline present a C(gamma)-endo ring conformation. These ring conformations, which show the same propensity observed in collagen-like peptides, are stabilized by additional intramolecular hydrogen bonds involving the 4-hydroxyl group, with the exception of the most stable form of 4(S)-hydroxyproline for which a n-pi interaction between the oxygen atom of the 4-hydroxyl group and the carboxyl group carbon seems to be established. A gauche effect could be also contributing to stabilize the observed conformers.  相似文献   

6.
Density functional theory calculations are used to compute proton nuclear magnetic resonance (NMR) chemical shifts, interatomic distances, atom–atom interaction energies, and atomic charges for partial structures and conformers of α‐D‐glucopyranose, β‐D‐glucopyranose, and α‐D‐galactopyranose built up by introducing OH groups into 2‐methyltetrahydropyran stepwisely. For the counterclockwise conformers, the most marked effects on the NMR shift and the charge on the OH1 proton are produced by OH2, those of OH3 and OH4 being somewhat smaller. This argues for a diminishing cooperative effect. The effect of OH6 depends on the configuration of the hydroxymethyl group and the position, axial or equatorial, of OH4, which controls hydrogen bonding in the 1,3‐diol motif. Variations in the interaction energies reveal that a “new” hydrogen bond is sometimes formed at the expense of a preexisting one, probably due to geometrical constraints. Whereas previous work showed that complexing a conformer with pyridine affects only the nearest neighbour, successive OH groups increase the interaction energy of the N⋯H1 hydrogen bond and reduce its length. Analogous results are obtained for the clockwise conformers. The interaction energies for C―H⋯OH hydrogen bonding between axial CH protons and OH groups in certain conformers are much smaller than for O―H⋯OH bonds but they are largely covalent, whereas those of the latter are predominantly coulombic. These interactions are modified by complexation with pyridine in the same way as O―H⋯OH interactions: the computed NMR shifts of the CH protons increase, the atom–atom distances are shorter, and interaction energies are enhanced.  相似文献   

7.
Resolved sets of photoproducts arising from the photodissociation of axial and equatorial conformers of 3-pyrroline have been observed using H(Rydberg) atom photofragment translational spectroscopy following excitation in the wavelength range of 250-213 nm. 3-pyrroline (alternatively 2,5-dihydropyrrole) is a five membered partially saturated heterocycle in which the bonding around the N atom is pyramidal (sp(3) hybridized) and the N-H bond can lie either axial or equatorial to the ring. Careful analysis of total kinetic energy release data derived from H atom time-of-flight measurements reveals excitation of the 3-pyrrolinyl cofragment consistent with N-H bond fission in both the axial and equatorial conformers. This allows determination of the energy difference between the ground state conformers to be 340±50 cm(-1) and the N-H bond strength for axial and equatorial conformers as 31,610±50 and 31,270±50 cm(-1), respectively.  相似文献   

8.
Cyclohexene oxide and its hydrogen bonded complex cyclohexene oxide⋯HCl have been investigated using a molecular beam Fourier Transform microwave spectrometer. The spectra of the parent species of cyclohexene oxide and its 13C and 18O isotopomers have been measured in their natural abundances. This has allowed obtaining the substitution and effective structures of the monomer heavy atom skeleton. A fast mixing nozzle has been designed to generate the complex preventing the reaction between the components. Only the equatorial conformer of the complex has been detected and its 35Cl and 37Cl isotopic species have been measured in their natural abundances. From the spectroscopic data the hydrogen bond structural parameters were obtained assuming that the structures of the monomers do not change upon complexation. HCl lies in the COC bisecting plane forming a non-linear hydrogen bond to the equatorial non-bonding electron pair at oxygen. The geometries of the axial and equatorial conformers have been optimized at MP2/6-311++G(d,p) level of theory predicting the equatorial conformer as the most stable one. The non-observation of the axial form is discussed.  相似文献   

9.
The bonding patterns between small neutral gold Au(3 < or = n < or = 7) and hydrogen fluoride (HF)(1 < or = m < or = 4) clusters are discussed using a high-level density functional approach. Two types of interactions, anchoring Au-F and F-H...Au, govern the complexation of these clusters. The F-H...Au interaction exhibits all the characteristics of nonconventional hydrogen bonding and plays a leading role in stabilizing the lowest-energy complexes. The anchor bonding mainly activates the conventional F-H...F hydrogen bonds within HF clusters and reinforces the nonconventional F-H...Au one. The strength of the F-H...Au bonding, formed between the terminal conventional proton donor group FH and an unanchored gold atom, depends on the coordination of the involved gold atom: the less it is coordinated, the stronger its nonconventional proton acceptor ability. The strongest F-H...Au bond is formed between a HF dimer and the singly coordinated gold atom of a T-shape Au4 cluster and is accompanied by a very large red shift (1023 cm(-1)) of the nu(F-H) stretch. Estimations of the energies of formation of the F-H...Au bonds for the entire series of the studied complexes are provided.  相似文献   

10.
Variable temperature (-55 to -100°C) studies of the infrared spectra (3500-400 cm(-1)) of fluorocyclobutane, c-C(4)H(7)F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be 496±40 cm(-1) (5.93±0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be 8±1%. The ab initio MP2(full) average predicted energy difference from a variety of basis sets is 732±47 cm(-1) (9.04±0.44 kJ/mol) and the average value of 602±20 cm(-1) from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (?) C-F=1.383(3) [1.407(3)], C(α)-C(β)=1.543(3) [1.546(3)], C(β)-C(γ)=1.554(3) [1.554(3)] and angles (°) ∠C(α)C(β)C(γ)=85.0(5) [89.2(5)], ∠C(β)C(α)C(β)=89.3(5) [89.2(5)], ∠F-(C(β)C(α)C(β))=117.4(5) [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudo-halogen substituents.  相似文献   

11.
The preparation, (1)H, (13)C, and (19)F NMR structural characterization as well as with DFT-based theoretical calculations of stable dialkyl ether/poly(hydrogen fluoride) complexes are reported. Dimethyl ether/poly(hydrogen fluoride) (DMEPHF), are stable complexes of particular interest and use. The DFT calculations, that are in agreement with NMR data, suggest a cyclic poly(hydrogen fluoride) bridged structure for DMEPHF. The complex, DME-5 HF was found to be a convenient and effective new fluorinating agent with the ease of workup and applied to several fluorination reactions, such as the hydrofluorination and bromofluorination of alkenes, and fluorination of alcohols giving good to excellent yield with high selectivity. Homologous dialkyl ether/poly(hydrogen fluoride) (R(2)O/[HF](n,), R = Et, nPr) systems are also stable and suitable for fluorination reactions.  相似文献   

12.
The hydrogen‐bonded complexes (HBCs) of H2S, CH2S, and CH4S with H–F (hydrogen fluoride) were studied within the framework of the quantum theory of atoms in molecules at several theoretical levels (HF, B3LYP, MP2, and QCISD) with a wide range of basis sets. According to the integrated atomic populations obtained at correlated levels, the interacting hydrogen of the acid gains charge upon complexation, in sharp contrast to the conventional picture of hydrogen bonding, whereas the HF method yields a small loss of charge. The study of several HnA…HmD HBCs of hydrides, where A is the hydrogen‐acceptor atom and D is the atom bonded to the hydrogen donor, reveals this behavior is followed when the electronegativity of D significantly exceeds that of A. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

13.
Tetraphenylantimony hydrogen phthalate, Ph4SbOC(O)C6H4000H-o, was prepared by the reaction of pentaphenylantimony with phthalic acid. According to the data of X-ray structural analysis, the resulting compound is a trigonal-bipyramidal complex of antimony with three phenyl groups in equatorial positions; the fourth phenyl group and the carboxyl fragment are in axial positions. The CSbO angle is 177.5(1)° the Sb-C(Ph)eq and Sb-C(Ph)ax distances are 2.099(4)-2.177(4) A and 2.129(4) A, respectively. The H atom of the free carboxyl group and the carbonyl O atom of another carboxylate group form an intramolecular hydrogen bond.DeceasedTranslated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 2082–2085, August, 1996.  相似文献   

14.
By quantum-chemical calculations at the M06-2X/aug-cc-pVTZ level of theory geometrical parameters, dipole moments, polarizabilities, first hyperpolarizabilities and relative energies of the axial and equatorial conformers in gaseous phase were determined for 1-cyano-1-silacyclohexane, 1-tert-butyl-1-silacyclohexane, 1-tert-butyl-1-cyano-1-silacyclohexane, and 1-fluoro-1-silacyclohexane. For the cyano group and fluorine atom the axial position is more preferable whereas for tert-butyl group, equatorial one. Polarizabilities of conformers are similar but optical anisotropy of equatorial conformers of C5H10SiHCN and C5H10SiH(t-Bu) molecules is much larger than that of axial conformers. Upon substitution in nitriles of C1 atom by Si atom the hyperpolarizability is many times increased.  相似文献   

15.
The hydrogen-bonded complex between 6-oxabicyclo[3.1.0]hexane and hydrogen chloride was investigated by microwave spectroscopy in a supersonic jet. A dual flow pulsed valve was used to preclude chemical reaction between the monomers. Only the equatorial conformer was observed and the spectra of three isotopomers, (C5H8O, H35Cl), (C5H8O, H37Cl) and (C5H8O, D35Cl), were measured. The derived structure of the complex has Cs symmetry with the hydrogen chloride pointing to the domain of the equatorial lone pair of electrons at the oxygen atom. The three atoms involved in the hydrogen bond adopt a bent arrangement with a O...H distance of 1.77(4) A, a (O...H-Cl) angle of 115(4)degrees, and a deviation of 15.4(14)degrees of the hydrogen bond from collinearity. In agreement with the experimental results, ab initio calculations predict the equatorial form to be the most stable one.  相似文献   

16.
[C_5H_7S_2]_2[(SbCl_3)_2S]的晶体结构   总被引:1,自引:1,他引:1  
[C_5H_7S_2]_2[(SbC1_3)_2S]的晶体结构采用x射线衍射法测定。晶体属于卑斜晶系,空间群C2/c,a=14.531(2),b=11.265(2),c=15.364(3),B=112.72(1)°,Z=4。在CAD-4四圆衍射仪上收集数据,用重原子法解出结构并经全矩阵最小二乘法修正。R=0.067。研究表明,该离子晶体中,[C_5H_7S_2]~+的C、S骨架具有平面构型,而[(SbCl_3)_2S]~(2-)的构型是:Sb原子周围形成缺位的准三角双锥构型,两个Sb准三角双锥通过共用S桥形成二聚体,∠Sb-S-Sb=98°,整个阴离子具有C_2对称性。  相似文献   

17.
The infrared spectra (3500 to 40 cm−1) of gaseous and solid and the Raman spectra (3500 to 30 cm−1) of liquid and solid 1-fluorosilacyclobutane, c-C3H6SiFH, have been obtained. Both the axial and equatorial conformers with respect to the fluorine atom have been identified in the fluid phases. Variable temperature (−105 to −150 °C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 282 ± 27 cm−1 (3.37 ± 0.32 kJ/mol), with the equatorial conformer the more stable form and the only conformer remaining in the annealed solid. At ambient temperature there is approximately 21 ± 2% of the axial conformer present in the vapor phase. From isolated Si–H stretching frequencies the Si–H (r0) distances are calculated to be 1.484 and 1.485 Å for the equatorial and axial conformers, respectively. Structural parameters have been predicted from MP2/6-311 + G(d,p) ab initio calculations and the adjusted r0 parameters for both conformers were obtained from a combination of the ab initio predicted values and the six previously reported microwave rotational constants. Along with the Si–H bond distance, the Si–C, and C–C distances of 1.865(5), and 1.571(5) Å, respectively, for the equatorial conformer are significantly different from the values for these parameters previously reported from an election diffraction study. Both the SiC and CC distances and the SiF distance are longer by 0.002 and 0.004 Å, respectively, for the axial conformer. Structural parameters have also been obtained for silacyclobutane, c-C3H6SiH2 and ethylsilylfluoride, CH3CH2SiH2F, from combined ab initio predicted values and previously reported rotational constants. Several of these newly determined parameters are significantly different from those previously reported for both molecules. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the level of Moller–Plesset (MP) to second order. A complete vibrational assignment supported by normal coordinate calculations is proposed for the equatorial conformer, and several of the fundamentals of the axial conformer have also been identified. The results are discussed and compared to corresponding quantities for some similar molecules.  相似文献   

18.
Full geometry optimizations were carried out at the HF/6-31G** and B3LYP/6-31G** levels for methylcyclohexane, 2-, 3-, and 4-methyltetrahydropyran, 2-, 3-, and 4-methylpiperidine, 2-, 3-, and 4-methylthiane, 2-, 4-, and 5-methyl-1,3-dioxane, and 2-, 4-, and 5-methyl-1,3-dithiane and also for S-methyl thianium. Constrained geometry optimizations were carried out for methylcyclohexane, 2-methyl-1,3-dioxane, and the axial conformers of 2- and 3-methyltetrahydropyran and 2- and 3-methylpiperidine. The steric repulsion model, which is believed to account for the conformational energies of the cited compounds, was tested by stretching bonds and bending angles so that the axial methyl group is either forced to approach the ring gamma methylenes or get farther away from them. The calculated energies show that the energy costs of these perturbations are not dependent on the distances between the axial methyl group and the ring gamma methylenes and are not dependent on whether the methyl is axial or equatorial. It is shown that, besides the steric repulsion model, the conformational energies of the compounds studied are dictated by hyperconjugative interactions involving mainly the methine hydrogen. The C[bond]C lengths of the axial and equatorial conformers of methylcyclohexane are shown to be related to hyperconjugation.  相似文献   

19.
The ground-state rotational spectra of nine isotopomers of a complex formed between 2,5-dihydrofuran and ethyne were recorded with a pulsed-jet, Fourier-transform microwave spectrometer. Rotational and centrifugal distortion constants were obtained for C4H6O...HCCH, C4H6O...DCCH, C4H6O...HCCD, C4H6O...DCCD, [3,4-D2]-C4H6O...HCCH, C4H6O...H13CCH, C4H6O...HC13CH, , and [3(13C]-C4H6O...HCCH. The substituted species were studied in their natural abundances. For the more abundant isotopomers, weak c-type transitions as well as strong a-type transitions were observed. The primary intermolecular binding was shown to consist of a hydrogen bond formed by the ethyne subunit acting as the proton donor and the O atom of 2,5-dihydrofuran as the proton acceptor. The complex has a plane of symmetry that includes the O atom and the ethyne subunit, with a pyramidal configuration at oxygen. A fit of the principal moments of inertia of all nine isotopomers under the assumption of unperturbed 2,5-dihydrofuran and ethyne geometries yielded the values r(O...H)=2.127(8) A, phi=57.8(18) degrees , and theta=16.2(32) degrees, where phi is the angle made by the HCCH subunit at O and theta is the angular deviation of the O...H-C nuclei from collinearity. This geometry is compared with those obtained by ab initio calculations conducted with a range of basis sets and with electron correlation taken into account at the MP2 (M?ller-Plesset second order) level of theory. A small inversion doubling (approximately equal to 20-30 kHz) of c-type transitions, well resolved only for the parent isotopomer and [3HCCH, was attributed to a vibrational motion that inverts the configuration at oxygen. A one-dimensional model for this motion was used with a double minimum potential energy function of the type V(phi)=alphaphi(4)+betaphi(2) to estimate the observed separation DeltaE(01) of the lowest pair (v=0 and v=1) of associated energy levels. The predicted DeltaE(01) had the same magnitude as that deduced from the inversion doubling of the c-type transitions. The geometry of C4H6O...HCCH is compared with those other B...HCCH, where B is vinyl fluoride, oxirane, and thiirane. A rationalization of the angular geometries of various B...HX, where X=F, Cl, Br, or CCH, is presented.  相似文献   

20.
The equilibrium structures, binding energies, and vibrational spectra of the cyclic, hydrogen-bonded complexes formed between formaldehyde, H(2)CO, and hydrogen fluoride clusters, (HF)(1< or =n < or =4), are investigated by means of large-scale second-order M?ller-Plesset calculations with extended basis sets. All studied complexes exhibit marked blue shifts of the C-H stretching frequencies, exceeding 100 cm(-1) for n = 2-4. It is shown that these blue shifts are, however, only to a minor part caused by blue-shifting hydrogen bonding via C-H...F contacts. The major part arises due to the structural relaxation of the H(2)CO molecule under the formation of a strong C=O...H-F hydrogen bond which strengthens as n increases. The close correlation between the different structural parameters in the studied series of complexes is demonstrated, and the consequences for the frequency shifts in the complexes are pointed out, corroborating thus the suggestion of the primary role of the C=O...H-F hydrogen bonding for the C-H stretching frequency shifts. This particular behavior, that the appearance of an increasingly stronger blue shift of the C-H stretching frequencies is mainly induced by the formation of a progressively stronger C=O...H-F hydrogen bond in the series of H(2)CO...(HF)(1< or =n < or =4), complexes and only to a lesser degree by the formation of the so-called blue-shifting C-H...F hydrogen bond, is rationalized with the aid of selected sections of the intramolecular H(2)CO potential energy surface and by performing a variety of structural optimizations of the H(2)CO molecule embedded in external, differently oriented dipole electric fields, and also by invoking a simple analytical force-field model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号