首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tirapazamine (1) is a promising antitumor agent that selectively causes DNA damage in hypoxic tumor cells, following one-electron bioreductive activation. Surprisingly, after more than 10 years of study, the products arising from bioreductive metabolism of tirapazamine have not been completely characterized. The two previously characterized metabolites are 3-amino-1,2,4-benzotriazine 1-oxide (3) and 3-amino-1,2,4-benzotriazine (5). In this work, 3-amino-1,2,4-benzotriazine 4-oxide (4) is identified for the first time as a product resulting from one-electron activation of the antitumor agent tirapazamine by the enzymes xanthine/xanthine oxidase and NADPH:cytochrome P450 oxidoreductase. As part of this work, the novel N-oxide (4) was unambiguously synthesized and characterized using NMR spectroscopy, UV-vis spectroscopy, LC/MS, and X-ray crystallography. Under conditions where the parent drug tirapazamine is enzymatically activated, the metabolite 4 is produced but readily undergoes further reduction to the benzotriazine (5). Thus, under circumstances where extensive reductive metabolism occurs, the yield of the 4-oxide (4) decreases. In contrast, the isomeric two-electron reduction product 3-amino-1,2,4-benzotriazine 1-oxide (3) does not readily undergo enzymatic reduction and, therefore, is found as a major bioreductive metabolite under all conditions. Finally, the ability of the 4-oxide metabolite (4) to participate in tirapazamine-mediated DNA damage is considered.  相似文献   

2.
The mechanism by which a benzotriazine 1,4-dioxide class of anticancer drugs produce oxidizing radicals following their one-electron reduction has been investigated using tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide, 1) and its 6-methoxy (6), 7-dimethylamino (7), and 8-methyl (8) analogues. By measuring the changes in absorption with pH, we found that the radical anions undergo protonation with radical pK(r) values of 6.19 +/- 0.05, 6.10 +/- 0.03, 6.45 +/- 0.04, and 6.60 +/- 0.04, respectively. The one-electron reduced species underwent a first-order reaction, with increased rate constants from 112 +/- 23 s(-)(1) for 1 to 777 +/- 12 s(-)(1)(6), 1120 +/- 29 s(-)(1) (7), and 825 +/- 89 s(-)(1) (8) at pH 7. No overall change in conductance was observed following the one-electron reduction of 6, and 8 at pH 4.5, consistent with the protonation of the radical anions, but a loss in conductance was seen for one-electron reduced 7 because of further protonation of the initially formed radical. This is assigned to the protonation of the dimethylamino group of the radical species, which has a pK(a) of 8.8 +/- 0.3. All conductance changes take place on a time-scale shorter than those of the above first-order reactions, which are not associated with the formation or loss of charged species. The absorption spectra present at the end of the unimolecular reactions were found to be similar to those formed immediately upon the one-electron oxidation of the respective substituted 3-amino-1,2,4-benzotriazine 1-oxides, and it is suggested that common benzotriazinyl radicals are formed by both routes. All these intermediate radicals underwent dismutation to produce final spectra matched by equal contributions of the parent compound and their respective substituted 3-amino-1,2,4-benzotriazine 1-oxides. By establishing redox equilibria between the intermediate radicals formed on the one-electron oxidation of the respective 3-amino-1,2,4-benzotriazine 1-oxides of the compounds and reference compounds, we found the one-electron reduction potential of the oxidizing radicals to range from 0.94 to 1.31 V. The benzotriazinyl radical of tirapazamine was found to oxidize dGMP and 2-deoxyribose with rate constants of (1.4 +/- 0.2) x 10(8) M(-)(1) s(-)(1) and (3.7 +/- 0.5) x 10(6) M(-)(1) s(-)(1), respectively.  相似文献   

3.
Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide), the lead bioreductive drug with selective toxicity for hypoxic cells in tumors, is thought to act by forming an active oxidizing radical of high one-electron reduction potential, E(1), when reduced by reductases. It has a dual mechanism of action, both generating DNA radicals, following its one-electron reduction and subsequently oxidizing these DNA radicals to form labile cations or hydrolyzable lactones through transferring an O atom, resulting in DNA strand breaks. These parallel secondary reactions have been proposed to be also initiated by its two-electron reduced metabolite, the 1-oxide. We have used pulse radiolysis to show that the benzotriazinyl radical of a highly soluble analogue of tirapazamine, the 3-(N,N-dimethyl-1,2-ethanediamine) analogue, is able to oxidize tirapazamine itself. We have found that both tirapazamine and the 1-oxides are in equilibrium with their respective benzotriazinyl radicals, with high concentrations of the more soluble 1-oxide maintaining a high concentration of the more reactive oxidizing radical of tirapazamine. The one-electron reduction potentials, E(1), of the 1-oxides and related compounds have been measured and, together with the E(1) values of tirapazamine and the 2-nitroimidazole radiosensitizer, misonidazole, are shown to predict the published percentages of electron transfer. This radical chemistry study gives an insight into the mechanisms of the potentiation of radical damage, reported for DNA, that underlies the hypoxic cytotoxicity of electron affinic compounds. The E(1) values of the benzotriazinyl radicals of the benzotriazine compounds govern the position of the redox equilibria, which determine the amount of initial radical damage. The E(1) values of the 1,4-dioxides and 1-oxide compounds govern the degree of potentiation of the initial radical damage once formed.  相似文献   

4.
An on-line microdialysis microbore HPLC method is described for the determination of the bioreductive anti-tumor agent, tirapazamine (3-amino-1,2,4-benzotriazine-1,4-di-N-oxide, SR4233, WIN59075, Tirazone, TPZ) and its two major reduced metabolites, 3-amino-1,2,4-benzotriazine-1-N-oxide (SR4317) and 3-amino-1,2,4-benzotriazine (SR4330). Detection limits of 0.003 microM, 0.005 microM and 0.007 microM were obtained for tirapazamine, SR4317 and SR4330, respectively. Linear ranges of 0.011-20 microM, 0.017-20 microM and 0.025-20 microM for tirapazamine, SR4317 and SR4330 permitted quantitative analysis of all three compounds in microdialysis samples. Typical intra-day reproducibilities (n = 7) of 4.1% (tirapazamine), 6.6% (SR4317), 9.9% (SR4317), and 1.8% (tirapazamine), 2.4% (SR4317) and 2.6% (SR4330) were obtained at the 0.12 microM and 1.2 microM levels, respectively. Inter-day reproducibilities (n = 5) of 3.4% (tirapazamine), 1.8% (SR4317), 4.5% (SR4330) and 2.5% (tirapazamine), 2.5% (SR4317) and 1.7% (SR4330) were obtained at the 0.12 microM and 1.2 microM levels, respectively. The use of an on-line microdialysis HPLC system, permitted the determination of tirapazamine, SR4317 and SR4330 in blood and muscle tissue of rats with a high temporal resolution of sampling. The pharmacokinetics of tirapazamine and its metabolites were studied in the muscle and blood of rats previously administered an intraperitoneal dose of tirapazamine.  相似文献   

5.
1H, 13C and 15N NMR measurements (1D and 2D including 1H--15N gs-HMBC) have been carried out on 3-amino-1, 2,4-benzotriazine and a series of N-oxides and complete assignments established. N-Oxidation at any position resulted in large upfield shifts of the corresponding N-1 and N-2 resonances and downfield shifts for N-4 with the exception of the 3-amino-1,2,4-benzotriazine 1-oxide in which a small upfield shift of N-4 was observed. Density functional GIAO calculations of the 15N and 13C chemical shifts [B3LYP/6-31G(d)//B3LYP/6-311+G(2d,p)] gave good agreement with experimental values confirming the assignments. The combination of 13C and 15N NMR provides an unambiguous method for assigning the 1H and 13C resonances of N-oxides of 1,2,4-benzotriazines.  相似文献   

6.
Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is the lead bioreductive drug in clinical trials as an anticancer agent to kill refractory hypoxic cells of solid tumors. It has long been known that, upon metabolic one-electron reduction, tirapazamine induces lethal DNA double strand breaks in hypoxic cells. These strand breaks arise from radical damage to the ribose moiety of DNA, and in this pulse radiolysis and product analysis study we examine mechanistic aspects of the dual function of tirapazamine and analogues in producing radicals of sufficient power to oxidize 2-deoxyribose to form radicals, as well as the ability of the compounds to oxidize the resulting deoxyribose radicals to generate the strand breaks. Both the rate of oxidation of 2-deoxyribose and the radical yield increase with the one-electron reduction potentials of the putative benzotriazinyl radicals formed from the benzotriazine 1,4-dioxides. Subsequent oxidation of the 2-deoxyribose radicals by the benzotriazine 1,4-dioxides and 1-oxides proceeds through adduct formation followed by breakdown to form the radical anions of both species. The yield of the radical anions increases with increasing one-electron reduction potentials of the compounds. We have previously presented evidence that oxidizing benzotriazinyl radicals are formed following one-electron reduction of the benzotriazine 1,4-dioxides. The reactions reported in this work represent the kinetic basis of a short chain reaction leading to increased oxidation of 2-deoxyribose, a process which is dependent on the one-electron reduction potential of the benzotriazinyl radicals that are above a threshold value of ca. 1.24 V.  相似文献   

7.
A 50 m/z unit loss from protonated 4-benzenesulfinyl-3-methylphenylamine has been observed and investigated using electrospray ionisation quadrupole ion trap mass spectrometry (ESI-QIT-MS). It was hypothesised that the specific fragmentation was affected by the presence of an ortho methyl group in relation to the sulfoxide functionality, i.e. an ortho effect influences the preferred dissociation pathway. This was because the des-methyl homologue did not display a 50 m/z unit loss. This fragmentation was shown to be a two-step process with sequential losses of a hydroxyl radical and a thiol radical. Molecular modelling calculations showed that the most favourable site of protonation for 4-benzenesulfinyl-3-methylphenylamine was the sulfoxide oxygen, which would facilitate the loss of a hydroxyl radical. Subsequent deuterium-exchange experiments confirmed that the loss was a hydroxyl radical and afforded definitive assignment of the site of protonation. Furthermore, the involvement of a single exchangeable hydrogen atom in the overall 50 m/z unit loss was demonstrated. Thus, supportive evidence was provided for the involvement of the ortho methyl group in the second stage of the fragmentation, leading to the loss of the thiol radical. Accurate mass measurements, performed using electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS), verified the elemental formulae of the individual losses. The ion structure following the 50 m/z unit loss was proposed to be a protonated aminofluorene and was supported by comparing the product ion spectrum of commercially available protonated 2-aminofluorene with the MS4 data of protonated 4-benzenesulfinyl-3-methylphenylamine. Fragmentation mechanisms are proposed. The relevance of the loss with regards to pharmaceutical drug metabolite identification is discussed.  相似文献   

8.
The dynamics of electron adducts of 2'-deoxynucleotides and oligonucelotides (ODNs) were measured spectroscopically by nanosecond pulse radiolysis. The radical anions of the nucleotides were produced within 10 ns by the reaction of hydrated electrons (e(aq)(-)) and were protonated to form the corresponding neutral radicals. At pH 7.0, the radical anion of deoxythymidine (dT(*-)) was protonated to form the neutral radical dT(H)(*) in the time range of microseconds. The rate constant for the protonation was determined as 1.8 x 10(10) M(-1) s(-1). In contrast, the neutral radical of dC(H)(*) was formed immediately after the pulse, suggesting that the protonation occurs within 10 ns. The transient spectra of excess electrons of the double-stranded ODNs 5'-TAATTTAATAT-3' (AT) and 5'-CGGCCCGGCGC-3' (GC) differed from those of pyrimidine radicals (C and T) and their composite. In contrast, the spectra of the electron adducts of the single-stranded ODNs GC and AT exhibited characteristics of C and T, respectively. These results suggest that, in duplex ODNs, the spectral intermediates of G-C and A-T anions complex were formed. On the microsecond time scale, the subsequent changes in absorbance of the ODN AT had a first-order rate constant of 4 x 10(4) s(-1), reflecting the protonation of T.  相似文献   

9.
Novel camphor-1,2,4-triazines fused with imidazole 2–3 , thiadiazole 4 , 1,2,4-triazole 7 , pyrimidine 9–13 and 1,3,5-triazine 14 , were synthesized starting from (5R,8S)-3-amino-5,9,9-trimethyl-5,6,7,8-tetrahydro-5,8-methano-1,2,4-benzotriazine 1 . Evaluation of central nervous system stimulant activity demonstrated that the presence of a N-N group at C-3 position of 1,2,4-benzotriazine will be essential for the activity.  相似文献   

10.
Time-resolved conversion of a series of beta-hydroxy arylethyl radicals with electron-donating and -withdrawing aromatic substituents to their corresponding styrene radical cation via heterolytic loss of the beta-hydroxy leaving group was examined with nanosecond laser flash photolysis. In all cases, the reaction was catalyzed by added perchloric acid. Radicals 2a-d reacted via a pre-equilibrium protonation mechanism in acidic 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and measuring rate constants for radical cation formation as a function of acid content allowed for the determination of absolute rate constants ranging from 3.6 x 10(6) to 3.8 x 10(7) s(-1) for the loss of water from the protonated beta-hydroxy arylethyl radicals 2a-d, as well as the acidity constants, pKa approximately 1.5 (in HFIP), for the protonated radicals. The 4-methoxy-substituted beta-hydroxy arylethyl radical 2e reacted by rate determining protonation in HFIP with a second-order rate constant of k(H+) = 7.8 x 10(8) M(-1) s(-1). However, in acetonitrile, 2,2,2-trifluoroethanol, and mixtures of these two solvents, 2e reacted by pre-equilibrium protonation, allowing for solvent effects on the rate constant for loss of water from the protonated radical 2e to be determined. With use of these data, substituent electronic effects on the kinetics of the beta-heterolysis reaction are discussed. Differences in the effect of solvent on the rate constant for loss of water from the protonated beta-hydroxy arylethyl radicals and other beta-substituted arylethyl radicals are also discussed.  相似文献   

11.
Palladium-mediated coupling of 3-chloro-1,2,4-benzotriazine 1-oxide with a variety of stannanes in the presence of Pd(PPh3)4 gives 3-alkyl derivatives in good yields. Suzuki reaction of the 3-chloro compound with phenylboronic acids gives 3-aryl-1,2,4-benzotriazine 1-oxides. Oxidation of 1-oxides with trifluoroperacetic acid gives the 1,4-dioxides. This method provides a better route to the potential anti-cancer agents SR 4895 and SR 4941.  相似文献   

12.
Flash vacuum pyrolysis of 3-methylsulfanyl-1,2,4-benzotriazine N-oxide, 3-methylsulfanyl-1,2,4-benzotriazine, and 3-phenyl-1,2,4-benzotriazine are described. The N-oxide derivative underwent deoxygenation between 500 and 600°C, whereas at higher temperatures both methylsulfanyl compounds, besides yielding the same products, also gave benzimidazole formed by an independent mechanism. Transformation of these derivatives between 600 and 750°C led to formation of a complex reaction mixture indicating the radical nature of the processes. The phenyl substituted derivative was studied between 575 and 650°C and afforded benzonitrile and traces of biphenylene.  相似文献   

13.
14.
The previously prepared 3-methyl-1,2,4-benzotriazine oxide1 is shown to be the 4-oxide 5. Synthesis and structures of other isomeric and related oxides are described. A modification of a previously described synthesis of 1,2,4-benzotriazines produces purer products in higher yields.  相似文献   

15.
1,2,4-Triazine 4-oxides were found to enter into the reactions of nucleophilic substitution of hydrogen with S-nucleophiles (arenethiols) in the presence of acylating agents and trifluoroacetic acid. The reactions proceeded with loss of the N-oxide function to form 5-arylthio-1,2,4-triazines. 2-Amino-3-ethoxycarbonylpyrazine 1-oxides and 2-amino-4-oxopterin 8-oxides react with arenethiol analogously.  相似文献   

16.
The protonation of 3-amino-1,2,4-triazole was studied potentiometrically (glass electrode) in sodium chloride and calcium chloride solutions, 0.13 I 0.92M, at 10, 25, 37 and 45 degrees . The effect of the background electrolyte on the protonation constants is explained by a complex formation model. The species CaL(+), CaHL(2+) and H(2)LCl (HL = 3-amino-1,2,4-triazole) are proposed. Stability constants, together with their dependence on temperature (DeltaH degrees ) and on ionic strength, are reported for the protonated and complex species.  相似文献   

17.
Revealing the free radical mechanism by which the anticancer drug tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) induces hypoxia-selective cytotoxicity, is seen as a way forward to develop clinically useful bioreductive drugs against chemo- and radiation-resistant hypoxic tumor cells. Our previous studies point to the formation of an active benzotriazinyl radical following the one-electron reduction of tirapazamine and its elimination of water from the initial reduction intermediate, and have suggested that this species is a cytotoxin. In this paper we have used pulse radiolysis to measure the one-electron reduction potentials of the benzotriazinyl radicals E(B*,H(+)/B) of 30 analogues of tirapazamine as well as the one-electron reduction potentials of their two-electron reduced metabolites, benzotriazine 1-oxides E(B/B*-). The redox dependencies of the back-oxidation of the one-electron reduced benzotriazine 1,4-dioxides by oxygen, their radical prototropic properties and water elimination reactions were found to be tracked in the main by the one-electron reduction potentials of the benzotriazine 1,4-dioxides E(A/A*-). Multiple regression analysis of published aerobic and hypoxic clonogenic cytotoxicity data for the SCCVII murine tumor cell line with the physical chemistry parameters measured in this study, revealed that hypoxic cytotoxicity is dependent on E(B*, H(+)/B) thus providing strong evidence that the benzotriazinyl radicals are the active cytotoxic species in hypoxia, while aerobic cytotoxicity is dependent on E(B/B*-). It is concluded that maximizing the differential ratio between these two controlling parameters, in combination with necessary pharmacological aspects, will lead to more efficacious anticancer bioreductive drugs.  相似文献   

18.
Positive and negative electrospray mass spectrometry (MS), in-time and in-space MS(n) experiments, high-resolution and accurate mass measurements obtained with an Orbitrap, together with density functional theory calculations have been used to study the gas-phase ion chemistry of a series of fluorinated 1,2,4-triazines. As a result of low-energy collision-induced dissociations, occurring in an ion trap and in a triple quadrupole, their protonated and deprotonated molecules show interesting features depending on the nature and structure of the precursor ions. The occurrence of elimination/hydration reactions produced by positive ions in the ion trap is noteworthy. Decompositions of deprotonated molecules, initiated by elimination of a hydroxyl radical from [M-H](-), are dominated by radical anions. Theoretical calculations have allowed us to obtain information on atom sites involved in the protonation and deprotonation reactions.  相似文献   

19.
Starting from the readily available 2-aminobenzhydrols ( 7 ), 3-amino-1,2,4-benzotriazine ( 11 ) and 2-amino-3-pyridinol ( 12 ), novel derivatives of 5-phenyl-5H-imidazo[1,2-a][3,1]benzothiazine-2-carboxylic acid, ethyl ester ( 4 ), imidazo[2,1-c][1,2,4]benzotriazine-2-carboxylic acid, ethyl ester ( 5 ) and 4H-imidazo[2,3-c]pyrido-[2,3-e][1,4]oxazine ( 6 ) were prepared.  相似文献   

20.
Collision induced dissociation (CID) of sodiated peptide derivatives containing a nitrate ester functionality was used to regiospecifically generate three isomeric radicals of the model peptide Bz-Ala-Gly-OMe corresponding to radicals formed at: C(α) of the alanine residue [4+Na](+); C(α) of the glycine residue [5+Na](+); and the side chain of alanine [6+Na](+). The ion-molecule reactions of these peptide radicals were examined to model oxidative damage to peptides and to probe whether the radical sites maintain their integrity or whether they isomerise via intramolecular hydrogen atom transfer (HAT). Only [6+Na](+) is reactive towards O(2), forming the peroxyl radical [7+Na](+), which loses O(2), HO˙ and HO(2)˙ under CID. The radical ion [7 + Na](+) abstracts a hydrogen atom from 4-fluorothiophenol to form the hydroperoxide [8+Na](+), which upon CID fragments via the combined loss of HO˙ and CH(2)O. In contrast, all three of the isomeric sodiated radicals react with NO˙ and NO(2)˙ to form adducts. CID of the NO adducts only regenerates the radicals via NO˙ loss, thus providing no structural information. In contrast, CID of the NO(2) adducts gives rise to a range of product ions and the spectra are different for each of the three adducts, suggesting that the isomeric radicals [4+Na](+), [5+Na](+) and [6+Na](+) are produced as discrete species. Finally, CID of the NO(2) adducts was used to probe the rearrangement of the radicals [4+Na](+), [5+Na](+) and [6+Na](+) prior to their reaction with NO(2)˙: [6 + Na](+) rearranges to a mixture of [4+Na](+) and [5+Na](+) while [5+Na](+) rearranges to [4+Na](+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号