首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
应用柠檬酸辅助溶胶-凝胶法.合成了Y3+掺杂的尖晶石LiNi0.49Mn1.49Y0.02O4材料.XRD、循环伏安、恒流充放电和交流阻抗测试结果表明,Y3+的掺杂能提高LiNi0.5Mn1.5O4的倍率和循环性能.在电压区间3.5~4.9V,1C倍率下,其初始放电比容量为114.9 mAh.g-1,100次循环后放电比容量仍可达113.0 mAh.g-1,容量保持率为98.3%.掺杂Y3+能减小材料界面阻抗.  相似文献   

2.
溶胶凝胶法合成锂离子电池正极材料LiMn2O4   总被引:4,自引:0,他引:4  
应用溶胶法由CH3COOL i.2H2O、Mn(CH3COO)2和已二酸制备含锂、锰的干凝胶,经高温焙烧制得尖晶石锰酸锂L iMn2O4.XRD分析显示,该尖晶石样品的结晶度随焙烧温度而升高,容量同时增加,但如超过800℃,则循环性能变差.延长焙烧时间,容量呈先增后降趋势.优化后的焙烧条件为750℃、20 h.以此制备的L iMn2O4初始放电容量为130 mAh.g-1,经过15次循环后仍达125 mAh.g-1.  相似文献   

3.
以LiAc,MnAc2和LaCl3为原料,通过高温固相两段烧结合成法制备了4种LiLaxMn2-xO4(Fx,x=0,0.02,0.04,0.06),其结构和形貌经XRD和SEM表征。结果表明,LiLa0.02Mn1.98O4(即F0.02)为纯尖晶石结构,表面形貌为球形。采用活性炭为导电剂制备了Fx的锂离子电池正极材料(Ex),并用循环伏安法研究了Ex的电化学性能。结果表明,E0.02在0.1 C倍率充放电时的首次放电容量为75 mAh·g-1;0.5 C倍率循环充放电时,放电比容量为79 mAh·g-1;经过20次0.2 C倍率循环充放电时,容量保持在80 mAh·g-1。  相似文献   

4.
采用缓冲溶液法制备Mn掺杂Ni_(1-x)Mn_x(OH)_2(x=0.1,0.2,0.3,0.4)。X射线衍射(XRD)测试表明x=0.1和0.2的样品主要是由β相组成;扫描电子显微镜(SEM)和氮气吸附-脱附测试表明掺杂Mn样品比不掺Mn的商用β-Ni(OH)2的颗粒更细小、多孔;恒流充放电测试表明,这种电极具有优良的高倍率性能,当x=0.2,电流密度800 mA·g-1时放电比容量为288.8 mAh·g-1,同等条件测试的商用β-Ni(OH)2放电比容量为198.7 mAh·g-1,循环580圈后仍有276 mAh·g-1的放电比容量,其衰减率为4.1%,而同等测试条件下的其它4种样品衰减率分别为46.1%(商用β-Ni(OH)2)、13.0%(x=0.1)、25.6%(x=0.3)、34.1%(x=0.4),可见这种Mn掺杂电极材料适合大电流密度充放电,能够改善镍电极的循环稳定性,降低镍电极成本。  相似文献   

5.
贺勇  唐子龙  张中太 《物理化学学报》2010,26(11):2962-2966
限制纳米电极材料倍率性能的一个重要因素是,在大电流下充放电时,纳米结构可能坍塌,造成容量迅速衰减.通过异价离子的掺杂或第二相的负载有可能弥补纳米材料的这一缺陷.本文以含有Cr2O3的锐钛矿TiO2为原料,通过超声化学-水热法,制备了负载Cr2O3的H2Ti2O5·H2O纳米管.采用X射线衍射(XRD)和透射电镜(TEM)对制得的H2Ti2O5·H2O/Cr2O3纳米管的晶体结构和微观形貌进行了表征和分析.恒流充放电测试显示,H2Ti2O5·H2O/Cr2O3(5%(w,质量分数))纳米管作为锂离子电池阳极材料具有优异的循环稳定性及倍率性能.在150mA·g-1的电流密度下,H2Ti2O5·H2O/Cr2O3纳米管的首次放电容量达到288mAh·g-1;120次循环后,充放电容量仍保持在145mAh·g-1.在1500mA·g-1的电流密度下,首次放电容量为178mAh·g-1;600次循环后,充放电容量保持在80mAh·g-1以上;继续在150mA·g-1电流密度下充放电30个循环,充放电容量达到155mAh·g-1,显示出充放电容量的可回复性.循环伏安测试结果表明,H2Ti2O5·H2O/Cr2O3纳米管的充放电过程由法拉第赝电容反应控制.该一维纳米结构在锂离子电池和非对称电容器领域显示出良好的应用前景.  相似文献   

6.
单斜Li3V2(PO4)3/C复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
以LiOH·H2O、V2O5、H3PO4和蔗糖为原料,采用软化学法制备了锂离子电池正极材料Li3V2(PO4)3/C.通过X射线衍射(XRD)、扫描电镜(SEM)对产物的结构和形貌进行表征,采用恒电流充放电、电化学阻抗考察了产物的电化学性能.结果表明.当煅烧温度达到700℃时,杂质相衍射峰消失,所得的样品为纯相的单斜Li3V2(PO4)3.颗粒粒度为1~2 μm;在3.0~4.5 V电压范围内以0.2C倍率充放电,首次放电比容量达到148.2 mAh·g-1,第50次循环比容量仍为144 mAh·g-1,容量保持率为97%,具有良好的循环性能;另外,样品还具有很好的倍率性能和高温性能.  相似文献   

7.
应用高温固相合成法制备L i[N i0.475Mn0.475Co0.05]O2.XRD,SEM,循环伏安及充放电容量测试表明,在800℃下煅烧合成的样品具有较高的嵌锂容量和良好的循环稳定性,如在20 mA/g和2.3~4.6 V的电压范围内,其首次放电比容量为178.8 mAh/g,循环30周后放电比容量仍能达到150.2 mAh/g,容量损失16.0%.  相似文献   

8.
利用聚乙烯吡咯烷酮(PVP)作为聚合物配位剂和燃料,通过凝胶-燃烧法合成了Li1.07Mn1.93O4纳米片.采用热重/差热分析(TG/DTA)研究了凝胶的燃烧过程.采用X射线多晶衍射(XRD)分析了材料的结构,结果表明合成的Li1.07Mn1.93O4结晶完整,无杂质相.扫描电镜(SEM)结果显示材料的二次形貌为厚度约100nm的片状,由大小约100nm的一次颗粒构成.充放电测试表明Li1.07Mn1.93O4纳米片具备极佳的倍率放电性能和优秀的循环性能.0.5C(1C=120mA.g-1)倍率的初始放电容量为115.4mAh.g-1,即使倍率增大到40C,放电容量仍有105.3mAh.g-1.在10C倍率的放电条件下,循环850次容量保持率为81%.电化学阻抗谱(EIS)测试表明Li1.07Mn1.93O4纳米片的界面电荷转移电阻(Rct)远小于同类商业材料.  相似文献   

9.
为了改善富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2的循环性能,采用燃烧法合成了正极材料Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06).通过X射线衍射(XRD)和扫描电镜(SEM)对其结构与形貌进行了表征,利用恒电流充放电测试,循环伏安(CV)及电化学交流阻抗谱(EIS)技术对其电化学性能进行测试.结果表明,Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06)正极材料均具有α-NaFeO2型层状结构;在室温,2.0-4.8 V电压范围,以0.1C和1.0C(充放电电流以1.0C=180 mA·g-1计算)倍率充放电进行测试,样品Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2的首次放电比容量分别为280.3和206.4 mAh·g-1.其中,在1.0C倍率下,100次循环后容量保持率由原来的73.2%提高到88.9%;以5.0C倍率充放电进行测试,经50次循环后,掺杂正极材料的放电比容量为76.5 mAh·g-1,而未掺杂材料仅有15.0 mAh·g-1.在50、25和-10°C,2.0C倍率条件下,掺杂正极材料的电化学性能均得到有效改善,其中,在-10°C经过50次循环后正极材料Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2比未掺杂的正极材料相比,其放电比容量提高了61.1%.  相似文献   

10.
由半固相法制得锂离子电池负极材料Li4Ti5O12,并研究了Li4Ti5O12的碳包覆改性.采用XRD、SEM、TEM以及HRTEM观察和分析产物的相结构与形貌.采用恒流充放电、循环伏安法和交流阻抗技术测试了材料的电化学性质.结果表明,Li4Ti5O12因颗粒团聚电化学性能严重下降,该电极在0.1C和0.5C首周期放电容量分别为121.7和87.6 mAh·g-1;碳包覆Li4Ti5O12/C材料呈球形分布,能抑制颗粒团聚,该电极倍率<0.5C时的放电比容量大于180 mAh·g-1,超过Li4Ti5O12的理论放电比容量(175 mAh·g-1);在1C、5C和10C倍率下,其容量仍保持在136、79.9和58.3 mAh·g-1,碳包覆改性材料具有优异的循环寿命和高倍率性能.  相似文献   

11.
采用水热反应的方法,以LiOH·H_2O,MnOOH和Sc_2O_3为原料,合成了一系列Sc~(3+)掺杂的锂离子电池正极材料LiSc_xMn_(1-x)O_2(x=0.01,0.02,0.03,0.05).利用X射线衍射和X光电子能谱测试研究了材料的结构和元素的化学状态.掺杂后的LiSc_xMn_(1-x)O_2材料仍保持正交相结构.电化学测试结果表明,掺杂后材料表现出较好的电化学性能,Sc~(3+)的掺入使材料的循环稳定性能大幅度提高,掺杂量为2%时LiMn_(0.981)Sc_(0.019)O_2材料的初次放电容量为140.5 mAh·g~(-1),60次循环后放电容量高达169.6 mAJl·g-.,远高于未掺杂的LiMnO_2材料的放电容量107.7 mAh·g~(-1).这种提高源于Sc~(3+)的加入,很好地起到了稳定晶体结构、有效抑制Jahn-Teller效应的作用.电化学阻抗测试结果表明,Sc~(3+)的掺人能改善材料的导电性能.  相似文献   

12.
本文以LiOH·H2O,NH4VO3,NH4H2PO4和柠檬酸等为原料采用流变相法成功地合成了磷酸钒锂化合物。利用XRD,TEM等手段对目标产物的结构和形貌进行了表征,结果表明:在800℃煅烧的样品具有单一纯相的单斜晶体结构。晶体颗粒分布在200~500nm范围,而且在颗粒表面包覆了一层碳,有利于材料的导电率的改善。对该材料的电化学性质进行了测试,实验发现:800℃煅烧的样品在0.1C和1C倍率电流条件下,首次放电比容量分别高达122.8和107mAh·g-1,经过30次循环后容量衰减很少。交流阻抗谱证实了800℃煅烧的样品具有较高的电导率。本文对800℃煅烧的样品具有较好电化学性能的原因进行了初步讨论。  相似文献   

13.
采用一种特殊微波合成法,流变相辅助微波合成法,制备了结晶度好、纯度高的尖晶石相的锂离子电池正极材料LiAl_(0.03)Mn_(1.97)O_4。对其进行了XRD分析和SEM研究,并就结构、形貌与传统固相法制备的LiMn_2O_4、LiAl_(0.03)Mn_(1.97)O_4进行了比较。采用这种漉变相辅助微波合成法制备的LiAl_(0.03)Mn_(1.97)O_4具有优良的电化学性能,电化学性能测试表明,这种材料具有比较高的首次放电容量(115mAh/g)以及良好的可逆性、优异的循环性能,25次循环结束比容量几乎不变,保持在115mAh/g左右,衰减性得到很好的改善。  相似文献   

14.
A series of Li4Ti5O12 materials were prepared by three different methods: solvothermal, sol-gel, and solid-state reaction methods. Phase composition, morphology, and particle sizes of the samples were studied by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties of the samples were investigated by charge-discharge tests. It is demonstrated that both sol-gel and solid-state reaction methods provided good control over the chemical composition and microstructure of the active material, in which sol-gel method yielded a fine Li4Ti5O12 spinel having an initial specific capacity of 146 mAh g-1 and low capacity fade during cycling. Comparatively, the solid-state method is simple and promising to prepare Li4Ti5O12 for commercial applications.  相似文献   

15.
以Li_2CO_3,TiO_2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li_4Ti_5O_(12)/C复合负极材料.并将之与AgNO_3复合,采用固相方法制备出了Ag表面修饰的Li_4Ti_5O_(12)(AG+C)复合材料.采用XRD、SEM和TEM测试方法对材料的微结构进行了表征.结果表明,C的存在对Ag单质在Li_4Ti_5O_(12)/C颗粒表面的大量形成起到了积极的促进作用.从而很大程度地提高了Li_4Ti_5O_(12)/C的电导率,因此有效地改善了其电化学性能.在1C倍率下,Li_4Ti_5O_(12)/(Ag+C)复合材料的首次放电容量达到了164 mAh·g(-1).  相似文献   

16.
采用两步加热高温固相法合成了掺杂Nd3+的LiFe1-xNdxPO4/C复合材料(x=0,0.01,0.02,0.04,0.06,0.08).用TG-DSC对前驱体进行分析和SQUID(超导量子干涉仪)对样品中Fe3+的磁性测定,优化了合成工艺条件;采用XRD、FE-SEM、EDS等方法分析了样品的结构并对其电化学性能进行了测试.结果表明:LiFe1-xNdxPO4/C复合材料具有橄榄石型结构;当Nd3+的掺杂量6%(物质的量分数)、煅烧温度700℃、煅烧时间16h时,样品在0.2C(1C=170.0mA·g-1)电流密度下的最大放电比容量可达165.2mAh·g-1,循环100次后的容量保持率仍为92.8%,在1C、2C、5C下的最大放电比容量分别为146.8、125.7和114.8 mAh·g-1.通过测定样品在不同较低倍率下的放电比容量,采用外推法得出制备样品的实测理论比容量为168.7 mAh·g-1.  相似文献   

17.
Achieving low charge overpotentials represents one of the most critical challenges for pursuing highperformance lithium-oxygen(Li-O2)batteries.Herein,we propose a strategy to realize low charge overpotentials by confining the growth of lithium peroxide(Li2O2)inside mesoporous channels of cathodes(CMK-8).The CMK-8 cathode with tortuous pore structures can extend the diffusion distance of lithium superoxide(LiO2)in the mesoporous channels,facilitating the further reduction of LiO2 to lithium peroxide(Li2O2)inside the pores and preventing them to be diffused out of the pores.Therefore,Li2O2 is trapped in the mesoporous channels of CMK-8 cathodes,ensuring a good Li2O2/CMK-8 contact interface.The CMK-8 electrode exhibits a low charge overpotential of 0.43 V and a good cycle life for 72 cycles with a fixed capacity of 500 m Ah g-1 at 0.1 A g-1.This study proposes a strategy to achieve a low charge overpotential by confining Li2O2 growth in the mesoporous channels of cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号